超分辨率转换

超分辨率转换

    深度学习模型压缩前景 更多内容
  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 使用ZSTD_JNI压缩算法压缩Hive ORC表

    使用ZSTD_JNI压缩算法压缩Hive ORC表 操作场景 ZSTD_JNI是ZSTD压缩算法的native实现,相较于ZSTD而言,压缩读写效率和压缩率更优,并允许用户设置压缩级别,以及对特定格式的数据列指定压缩方式。 目前仅ORC格式的表支持ZSTD_JNI压缩方式,而普通的Z

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成熟的权限管理体系,保障数据安全的同时,确保团队高效协作。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    规格的差异如表1所示。 表1 机器人版本说明 功能列表 专业版 旗舰版 管理问答语料 √ √ 实体管理 √ √ 问答模型训练 轻量级深度学习 √ √ 重量级深度学习 - √ 调用 问答机器人 √ √ 问答诊断 √ √ 运营面板 √ √ 高级设置 基本信息 √ √ 知识共享 √ √ 应用授权

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    介绍语言处理相关知识,传统语音模型深度神经网络模型和高级语音模型 自然语言处理 理论和应用 技术自然语言处理的预备知识,关键技术和应用系统 华为AI发展战略与全栈全场景解决方案介绍 介绍华为AI的发展战略和解决方案 ModelArts概览 介绍人工智能、机器学习深度学习以及ModelArts相关知识

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 游戏/社交语音 监测游戏APP / 社交APP中的聊天内容以及语音动态,降低业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 计费说明

    ,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 功能介绍

    遥感解译专用模型,支持用户进行预训练和解译应用。 图18 部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

  • 行列存压缩

    来讲,压缩级别越高,压缩比也越大,压缩时间也越长;反之亦然。实际压缩比取决于加载的表数据的分布特征。 table.compress.level指定表数据同一压缩级别下的不同压缩水平,它决定了同一压缩级别下表数据的压缩比以及压缩时间。对同一压缩级别进行了更加详细的划分,为用户选择压

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    还缺少某一部分数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习深度学习模型模型可以应用到新的数据中,得到预测、评价等结果。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 常用概念

    nt Video Team)提出的高度压缩数字视频编解码器标准,同时也是MPEG-4第十部分。 H.264标准的主要目标是:与其它现有的视频编码标准相比,在相同的带宽下提供更加优秀的图像质量。它既保留了以往压缩技术的优点和精华又具有其他压缩技术无法比拟的许多优点。 H.265 H

    来自:帮助中心

    查看更多 →

  • Linux块迁移,设置压缩线程个数或关闭压缩功能

    Linux块迁移,设置压缩线程个数或关闭压缩功能 场景描述 Linux块迁移默认启用压缩功能,根据源端资源占用的情况配置迁移过程中采用的压缩线程个数(默认设置为当前空闲CPU核数的数量,最大数量不超过3),可能会存在压缩导致CPU资源占用过高的情况,可以在 SMS 控制台配置目的端时,设置压缩线程个数或关闭压缩功能。

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC,RCFile,TextFi

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了