深度学习模型部署 更多内容
  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 使用AI原生应用引擎完成模型调优

    数据集是模型微调的基础,首先需要创建用于模型训练的数据集。 创建模型微调流水线 通过模型微调任务进行模型训练,微调任务结束后,将生成改进后的新模型部署模型 模型部署是通过为基座模型(即原模型)和微调后的新模型创建用于预测的模型服务的过程实现。 测试模型调优效果 在线测试微调后的模型(输入问题发起请求获取数据分

    来自:帮助中心

    查看更多 →

  • 产品术语

    产品术语 A AI应用市场 提供AI模型的交易市场,是AI消费者接触NAIE云服务的线上门户,是AI消费者对已上架的AI模型进行查看、试用、订购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习模型训练的框架,如Tensorflow、Spark MLlib、M

    来自:帮助中心

    查看更多 →

  • 基本概念

    局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所有参数进行更新。这种方法可以显著减少微调所需的计算资源和时间,同时保持或接近模型的最佳性能。 过拟合 过拟合是指为了得到一致假设而使假设变得过度严格,会导致模型产生“以偏概全”的现象,导致模型泛化效果变差。

    来自:帮助中心

    查看更多 →

  • 概述

    文件管理是 可信智能计算服务 提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。 父主题: 可信联邦学习作业

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 应用场景

    据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 功能介绍

    针对客户的特定场景需求,定制垂直领域的 语音识别 模型,识别效果更精确。 录音文件识别 对于录制的长语音进行识别,转写成文字,提供不同领域模型,具备良好的可扩展性,支持热词定制。 产品优势 高识别率 基于深度学习技术,对特定领域场景的语音识别进行优化,识别率达到业界领先。 稳定可靠 成功

    来自:帮助中心

    查看更多 →

  • 产品优势

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 功能介绍

    统一的API接口,支持多种深度学习开发框架。 提供模型训练、开发、调试、部署、管理一站式服务,无缝对接用户设备。 在云侧模型管理中导入ModelArts训练出的模型,也可导入用户线下开发的自定义模型。 技能开发完成后可发布到AI Gallery或直接部署到端侧设备。 对接AI开发

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 模型训练服务简介

    联邦学习&重训练,保障模型应用效果 支持联邦学习模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务的联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 方案概述

    高识别 该方案基于深度学习技术,对特定领域场景的语音识别进行优化,识别率高。 稳定可靠 该方案成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。 可定制化 该方案针对客户的特定场景需求,定制垂直领域的语音识别模型,识别效果更精确。 约束与限制 部署该解决方案前,您

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    图像搜索 Image Search ,又称为多媒体搜索)基于深度学习与图像识别技术,是一套开箱即用的场景化搜索服务,支持图像等数据的管理和搜索,提供多种通用预置场景的搜索能力,并支持低成本、高敏捷的定制化服务,为用户提供安全、可靠、快速、准确的一键部署场景化内容搜索需求。 图像搜索服务以开放API(Application

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    Engine,简称CCE)是一个企业级的Kubernetes集群托管服务,支持容器化应用的全生命周期管理,为您提供高度可扩展的、高性能的云原生应用部署和管理方案。 为什么选择云容器引擎 云容器引擎深度整合高性能的计算(E CS /BMS)、网络(VPC/EIP/ELB)、存储(EVS/OBS/SFS)等服务,并支持G

    来自:帮助中心

    查看更多 →

  • 方案概述

    以上下游质量管理作为核心产品,实现从产品质量策划到质量执行反馈的全生命周期供应链互联,真正解决信息孤岛和企业质量管理的需求,同时结合华为大数据、深度学习、大模型等技术深度挖掘企业质量管理潜能,形成端到端的智能决策和快速响应。 解决方案实践的应用行业推荐: 服务于制造业,主要目标行业为智能汽车与新能

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了