AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型不断更新 更多内容
  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本大的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 方案概述

    AI空间布置 AI空间算法:AI识别空间大小、动线、风水等维度参数,做到空间合理分区、科学布置; 模型智能布置:学习模型的色系、大小、风格,根据空间算法智能选择适配且搭配美观的模型组合 图5 模型智能布置 核心技术2:自研云渲染技术,实现高画质、交互式的实时渲染效果 云渲染技术 强大AI

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 产品概述

    数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图,提供插件化的 区块链

    来自:帮助中心

    查看更多 →

  • 套餐包

    用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐包

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    Interface,应用程序编程接口)的方式提供给用户,用户通过调用API获取推理结果,帮助用户打造智能化业务系统,提升业务效率。 内容审核-图像 图像 内容审核 ,利用深度神经网络模型对图片内容进行检测,准确识别图像中的暴恐元素、涉黄内容等,帮助业务规避违规风险。 内容审核-文本 文本内容审核 ,采用人工智能文本检测

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 什么是Fabric

    日益增大的数据处理和机器学习/深度学习任务对分布式计算的问题,也为数据工程和机器学习工程提供统一的完整Workflow。Fabric Ray支持Ray-Data、Ray-Train、Ray-Serve模块,分别满足分布式数据预处理、分布式训练、分布式模型推理服务的应用场景。 在线推理

    来自:帮助中心

    查看更多 →

  • 场景介绍

    模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 基本概念

    技能(Skill) 技能(Skill)是运行在端侧摄像头的人工智能应用,一般由模型和逻辑代码组成。其中,逻辑代码是技能的框架,负责控制技能的运行,包括数据读入、模型导入、模型推理、结果输出等;模型是人工智能算法经由大数据训练而成,负责技能运行中关键场景的推理。 按应用场景划分,

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 准备工作

    Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了