AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习框架keras安装 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    2.0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 创建和训练模型

    model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10)

    来自:帮助中心

    查看更多 →

  • Notebook中使用Conda安装Keras 2.3.1报错

    Notebook中使用Conda安装Keras 2.3.1报错 问题现象 使用Conda安装Keras 2.3.1版本报错。 原因分析 可能是Conda网络不通,请使用pip install命令安装。 解决方法 执行 !pip install keras==2.3.1命令安装Keras。 父主题: 环境配置故障

    来自:帮助中心

    查看更多 →

  • 开发用于预置框架训练的代码

    型引用了其他依赖,您需要在“算法管理 > 创建算法”的“代码目录”下放置相应的文件或安装包。 安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库? 在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数

    来自:帮助中心

    查看更多 →

  • 导入和预处理训练数据集

    print_function, unicode_literals # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import

    来自:帮助中心

    查看更多 →

  • 传感框架

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • 是否支持Keras引擎?

    是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8% Atlas人工智能计算平台

    来自:帮助中心

    查看更多 →

  • GPU加速型

    TOPS 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 支持开启/关闭超线程功能,详细内容请参见开启/关闭超线程。 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习、训练推理、

    来自:帮助中心

    查看更多 →

  • 云端推理框架

    云端推理框架 推理服务 异步推理 模型仓库 模板管理 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    诊断”。 深度诊断功能依赖UniAgent,如果提示未安装UniAgent或者安装失败,请参考为E CS 安装UniAgent进行安装,否则无法发送命令。 图1 深度诊断 勾选“同意安装插件并采集数据”后,单击“确定”。 诊断结果及说明,请参见深度诊断结论。 在诊断结果的“诊断报告”页签查看诊断详情。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 配置&编译框架简介

    配置&编译框架简介 Huawei LiteOS使用Kconfig文件配置系统,基于GCC/Makefile实现组件化编译。 不论是Linux下使用make menuconfig命令配置系统,还是Windows下使用Huawei LiteOS Studio进行图形化配置,Huawei

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 基本概念

    HiLens Kit 华为HiLens开发套件。也可以专门代表集成了华为海思昇腾芯片,高性能推理能力,支持基于深度学习技术,实现图像、视频的分析、推理的智能推理摄像机,帮助用户快速安装部署多种AI技能。 HiLens Framework 封装基础开发组件,为开发者提供简单易用的开发接口,

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了