云解析服务 DNS

云解析服务(Domain Name Service)提供高可用,高扩展的权威DNS服务和DNS管理服务,把人们常用的域名或应用资源转换成用于计算机连接的IP地址,从而将最终用户路由到相应的应用资源上

    深度学习框架Caffe源码解析 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • Caffe分类范例

    Caffe分类范例 本实践采用caffe官方的分类例子,地址为https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb。 使用CPU 创建一个普通job,镜像输入第三方镜像bvlc/caffe:cpu,设置对应的容器规格。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    问题 深度学习预备知识和深度学习概览 介绍深度学习预备知识,深度学习概览 华为云EI概览 介绍华为AI的认知与EI的由来,并详细介绍华为云EI企业智能 Python编程基础实验 介绍Python编程基础实验相关知识 TensorFlow介绍 介绍TensorFlow框架,TensorFlow2

    来自:帮助中心

    查看更多 →

  • GPU加速型

    支持NVIDIA CUDA并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Core能力,深度学习混合精度运算能力达到125 TFLOPS。

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8% Atlas人工智能计算平台 7% 华为智能终端AI开放平台 3%

    来自:帮助中心

    查看更多 →

  • 是否支持caffe引擎?

    是否支持caffe引擎? ModelArts的python2环境支持使用caffe,目前python3环境无法使用caffe。 父主题: 规格限制

    来自:帮助中心

    查看更多 →

  • 传感框架

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如TensorflowSpark MLlibMXNetPyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 溯源码生成

    源码生成 功能介绍 溯源码生成 URI POST /v1/{project_id}/trace/trace-sweepcode/label/submit 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 租户从IAM申请到的projectid,一般为32位字符串

    来自:帮助中心

    查看更多 →

  • CCE部署使用Caffe

    CCE部署使用Caffe 预置条件 资源准备 Caffe分类范例 父主题: 批量计算

    来自:帮助中心

    查看更多 →

  • 源码咨询

    企业门户自己设计的代码网站页面和数据,能不能导出源代码到自己 本地服务器 部署? 企业门户不支持导出源代码。 企业门户支持修改源码吗? 企业门户不支持修改源码,您可以通过添加高级代码插件编辑页面。 怎么上传自己的源码? 企业门户服务不支持上传整个网站的源代码。 多终端独立版站点可以考虑通过添加高级代码插件实现相关功能。

    来自:帮助中心

    查看更多 →

  • 模型训练简介

    新建模型训练工程:支持用户在线编辑并调试代码,基于编译成功的代码对模型训练工程的数据集进行训练,输出训练报告。用户可以根据训练报告结果对代码进行调优再训练,直到得到最优的训练代码。 新建联邦学习工程:创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • Caffe算子边界

    Caffe算子边界 对于Caffe框架,当算子的输入维度不是4时,如果存在axis参数,不能使用负数。 “.om”模型支持的Caffe算子边界如表1所示。 表1 Caffe算子边界 序号 算子 含义 边界 1 Absval 对输入求绝对值 【输入】 1个输入 【参数】 engin

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • 云端推理框架

    云端推理框架 推理服务 异步推理 模型仓库 模板管理 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 旧版训练迁移至新版训练需要注意哪些问题?

    ser”,请注意识别训练代码中是否有“/home/work”的硬编码。 提供预置引擎类型有差异。新版的预置引擎在常用的训练引擎上进行了升级。 如果您需要使用旧版训练引擎,单击显示旧版引擎即可选择旧版引擎。新旧版支持的预置引擎差异请参考表1。详细的训练引擎版本说明请参考新版训练和旧版训练分别支持的AI引擎。

    来自:帮助中心

    查看更多 →

  • 获取训练作业支持的AI预置框架

    "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version" : "tensorflow_2.1.0-cuda_10

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了