AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习caffe源码 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • Caffe分类范例

    Caffe分类范例 本实践采用caffe官方的分类例子,地址为https://github.com/BVLC/caffe/blob/master/examples/00-classification.ipynb。 使用CPU 创建一个普通job,镜像输入第三方镜像bvlc/caffe:cpu,设置对应的容器规格。

    来自:帮助中心

    查看更多 →

  • 溯源码生成

    源码生成 功能介绍 溯源码生成 URI POST /v1/{project_id}/trace/trace-sweepcode/label/submit 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 租户从IAM申请到的projectid,一般为32位字符串

    来自:帮助中心

    查看更多 →

  • 是否支持caffe引擎?

    是否支持caffe引擎? ModelArts的python2环境支持使用caffe,目前python3环境无法使用caffe。 父主题: 规格限制

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 源码咨询

    企业门户自己设计的代码网站页面和数据,能不能导出源代码到自己 本地服务器 部署? 企业门户不支持导出源代码。 企业门户支持修改源码吗? 企业门户不支持修改源码,您可以通过添加高级代码插件编辑页面。 怎么上传自己的源码? 企业门户服务不支持上传整个网站的源代码。 多终端独立版站点可以考虑通过添加高级代码插件实现相关功能。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的E CS 的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 开发模型

    Kit的AI芯片支持运行“.om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“

    来自:帮助中心

    查看更多 →

  • Caffe算子边界

    Caffe算子边界 对于Caffe框架,当算子的输入维度不是4时,如果存在axis参数,不能使用负数。 “.om”模型支持的Caffe算子边界如表1所示。 表1 Caffe算子边界 序号 算子 含义 边界 1 Absval 对输入求绝对值 【输入】 1个输入 【参数】 engin

    来自:帮助中心

    查看更多 →

  • 开发算法模型

    om”模型,“.om”模型可以通过TensorFlowCaffe模型转换而来,但“.om”模型并不支持TensorFlowCaffe全部的算子,所以在开发模型的时候开发者需要用“.om”模型支持的算子,才能把TensorFlowCaffe模型转换成“.om”模型。“.om”

    来自:帮助中心

    查看更多 →

  • GPU加速型

    支持NVIDIA CUDA并行计算,支持常见的深度学习框架TensorflowCaffePyTorchMXNet等。 单精度能力15.7 TFLOPS,双精度能力7.8 TFLOPS。 支持NVIDIA Tensor Core能力,深度学习混合精度运算能力达到125 TFLOPS。

    来自:帮助中心

    查看更多 →

  • 下载源码包

    下载源码包 下载Fabric源码包作为三方库。可选择使用1.x或2.x风格开发跨链智能合约: 版本 链接 1.x https://github.com/hyperledger/fabric/tree/release-1.4 2.x https://github.com/hyper

    来自:帮助中心

    查看更多 →

  • 溯源码删除

    源码删除 功能介绍 溯源码删除 URI POST /v1/{project_id}/trace/trace-sweepcode/label/delete 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 租户从IAM申请到的projectid,一般为32位字符串

    来自:帮助中心

    查看更多 →

  • 溯源码查询

    源码查询 功能介绍 溯源码查询 URI POST /v1/{project_id}/trace/trace-sweepcode/label/info 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 租户从IAM申请到的projectid,一般为32位字符串

    来自:帮助中心

    查看更多 →

  • 源码仓库授权

    在左侧导航栏中选择“系统设置”。 单击“源码仓库授权”模块中的“编辑”,进入“已授权源码仓库”页面。 选择以下任意方式删除源码仓库授权。 批量删除。 勾选待删除授权源码仓库,单击“批量删除”。 图2 批量删除 在弹出框中输入“DELETE”,单击“确定”,完成删除授权。 单个删除。 选择待删除授权源码仓库,在“操作”列单击“删除”。

    来自:帮助中心

    查看更多 →

  • 导入导出应用源码包

    应用打包发布。 先发布源码包,再下载源码包到本地(下载即是导出源码包),请参见1。 发布源码包的步骤,请参见如何将应用发布到“我的仓库”。 图4 编译设置:全量导出源码包 图5 编译设置-组件:部分组件导出源码包 类别中“租户级组件”指的是当前租户内所存在的组件。 如何导入源码包 获取到其他租户导出的源码包。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    ,若其中穿插了其他数据操作,需要保证有前后衔接关系的两个代码框的dataflow名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备 > 绑定源数据”。界面新增“绑定迁移前的源数据”内容。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了