中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    深度学习基于大数据 更多内容
  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 基因容器基于Kubernetes智能化基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    包含“高级版”功能,以及以下功能。 多轮技能管理 知识共享 应用授权 旗舰版 适用于对机器人答准率有高要求,数据样本的场景,包括以下功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。

    来自:帮助中心

    查看更多 →

  • 方案概述

    率降低 员工个人提能拥有更好的工具,随时可以学习学习内容更匹配企业和岗位所需。 方案架构 由 华为云计算 底座+智能AI+学习平台产品形成面向企业培训的解决方案: 基于对14热点行业(房地产、互联网、快消、金融、汽车等)标杆企业的大数据分析,深入研究和实验,建立77个重点岗位职能

    来自:帮助中心

    查看更多 →

  • ModelArts

    部署在线服务 使用模型在ModelArts Standard创建AI应用部署在线服务 自定义镜像 用于推理部署 从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于模型的数据泛化:您可以通过调用模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装为有监督数据。使用模型

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)

    附录:模型推理standard常见问题 父主题: LLM语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)

    附录:Standard模型推理常见问题 父主题: LLM语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)

    附录:Standard模型推理常见问题 父主题: LLM语言模型训练推理

    来自:帮助中心

    查看更多 →

  • 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)

    主流开源模型基于Standard适配PyTorch NPU推理指导(6.3.906) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 父主题: LLM语言模型训练推理

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    或下溢,从而提供更好的稳定性和可靠性,在模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF

    来自:帮助中心

    查看更多 →

  • 实施步骤

    图1 文档问答 文档知识抽取:模型文档支持自定义场景分类上传文档、支持基于场景分类进行文档QA抽取。 图2 文档知识抽取 创建文档分类,只需要定义名称,并上传需要的知识文档即可。 只需要三步即可完成文档入库并基于文档进行QA抽取 设置分类名称、基于文档所属分类定义分类名称,最多20个字符⻓度

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 功能特性

    功能特性 基于AI智能引擎的威胁检测 威胁检测服务 基于威胁情报和规则基线检测的基础之上,融入了AI智能检测引擎。通过弹性画像模型、无监督学习模型、有监督学习模型实现对风险口令、凭证泄露、Token利用、异常委托、异地登录、未知威胁、暴力破解七IAM高危场景进行智能检测。通过S

    来自:帮助中心

    查看更多 →

  • 产品优势

    体协作效率。 基于 区块链 构建数据可信共享平台,促进多方数据可信流动、打破数据孤岛,发挥数据价值。 基于区块链、TEE(Trusted Execution Environment)技术和联邦学习等技术构建数据不出域的安全计算能力,达到数据可用不可得,充分保障用户数据隐私。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 支持将平台资产中心预置的部分模型作为微调前基础模型,也可以选择微调后的新模型作为基础模型再次进行微调。 前提条件 已订购模型微调服务API在

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了