AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习回归预测 更多内容
  • 提交排序任务API

    知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“FiBiNET”三

    来自:帮助中心

    查看更多 →

  • 执行作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现预测分析

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。

    来自:帮助中心

    查看更多 →

  • 创建批量预测作业

    必须选择一个已有模型才能创建批量预测作业。 批量预测作业必须选择一个当前计算节点发布的数据集。 创建联邦预测作业 批量预测作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法、深度神经网络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。

    来自:帮助中心

    查看更多 →

  • 取回归档存储对象

    取回指定桶中的归档存储对象。

    来自:帮助中心

    查看更多 →

  • 最新动态

    计算节点管理 2021年7月 序号 功能名称 功能描述 阶段 相关文档 1 联邦预测 新增支持联邦预测作业。联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 公测 联邦预测作业 2 联邦分析新增union all语法 安全多方计算MPC扩展语法支持union

    来自:帮助中心

    查看更多 →

  • 时序预测

    ”。 预测长度:预测的样本数量,默认值“1”。例如当前数据是按小时采集的3000条样本数据,如果想通过模型预测未来1天的样本数据,因为按小时采集,所以为24条数据,那么“预测长度”需要配置为“24”。 预测粒度:保持默认值。 预测类型:取值说明如下所示。本次请选择“时空预测”。

    来自:帮助中心

    查看更多 →

  • 服务预测

    服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout

    来自:帮助中心

    查看更多 →

  • CPI预测

    CPI预测 CPI预测基于蛋白质的一级序列和化合物的2D结构进行靶点匹配,精确的预测化合物-蛋白相互作用。 单击“CPI预测”功能卡片,进入配置页面。 配置靶点文件。 支持3种输入方式,分别是输入氨基酸序列、选择文件、输入PDB ID 输入FASTA格式氨基酸序列,输入框最多支持

    来自:帮助中心

    查看更多 →

  • 实时预测

    实时预测 实时预测通过在计算节点部署在线预测服务的方式,允许用户利用POST请求,在毫秒级时延内获取单个样本的预测结果。 创建实时预测作业 执行实时预测作业 删除实时预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • 排序策略

    。 逻辑斯蒂回归-LR 逻辑斯蒂回归算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑斯蒂回归算法通过在线性回归的基础上叠加一个sigmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。单击查看逻辑斯蒂回归详情信息。 表1

    来自:帮助中心

    查看更多 →

  • 预测类数据集格式要求

    预测类数据集格式要求 平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,每个数据点都有一个时间戳,表示数据在时间上的位置。它用于预测未来事件或趋势,过去的数据会影响未来的预测回归分类数据:回归分类数据包含多种

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 预测接口

    预测接口 功能介绍 线上预测接口。 URI POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选 参数类型 说明 rec_num 否 Integer 请求返回数量,默认返回50条。 user_id 是 String

    来自:帮助中心

    查看更多 →

  • 批量预测

    批量预测 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 创建批量预测作业 编辑批量预测作业 执行批量预测作业 删除批量预测作业 父主题: 联邦预测作业

    来自:帮助中心

    查看更多 →

  • 预测机制

    预测机制 预测的准确性 预测主要是基于用户在华为云上的历史成本和历史用量情况,对未来的成本和用量进行预测。您可以使用预测功能来估计未来时间内可能消耗的成本和用量,并根据预测数据设置预算提醒,以达到基于预测成本进行预算监控的目的。由于预测是一种估计值,因此可能与您在每个账期内的实际数据存在差异。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了