AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习和特征工程 更多内容
  • 数据准备

    单击“确定”,执行数据联合。 数据连接 特征工程数据连接的原理与数据集中数据连接的原理相同,具体请参见数据连接。特征工程的数据连接参数说明如下: 当前打开的特征工程的数据集实例为左表,“数据连接”对话框中数据集的数据为右表。 主键为左表的键值,外键为右表的键值。主键外键必须相同。 连接方式为

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机深度神经网络对于特征表达的学习,同时学习高阶低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 路网数字化服务-成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 样例数据导入模型训练服务

    样例数据导入模型训练服务 在项目概览界面,单击菜单栏中的“特征工程”,进入“特征工程”界面。 单击界面右上角的“特征处理”,弹出“特征处理”对话框。 请根据实际情况,配置如下参数: 工程名称:特征工程名称。 开发模式:请选择“Jupyterlab交互式开发”。 规格:选择Jupyterlab环境部署的容器规格大小。

    来自:帮助中心

    查看更多 →

  • 5G消息 Message over 5G

    CCE云容器引擎是否支持负载均衡? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? CCE是否深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 新建数据集和导入数据

    60分钟数据集、KPI异常检测数据集、4份迁移学习数据集。 其中鸢尾花原始测试集、KPI 15分钟数据集KPI 60分钟数据集中包括空值,用户可以通过特征工程进行数据修复,剔除空值。 本地上传-文件大小限制为60M,文本支持csvtxt 数据来源选择“本地上传”时可见,表示数据文件所在的用户本地路径。

    来自:帮助中心

    查看更多 →

  • 可信联邦学习作业

    可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程作业报告 删除作业 安全沙箱机制

    来自:帮助中心

    查看更多 →

  • AutoML的使用入口有哪些?

    在WebIDE中导入AutoML模块,代码为“from naie.automl import VegaAutoML”。通过代码调用SDK的方式,便于与其他代码的集成开发调试。 通过提交模型训练任务的方式。 因为AutoML一般需要很多次的迭代过程,且运行时间很长。可通过提交训练任务,运行AutoML。 父主题:

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,每套折合10人天投入工作量; 188,160.00 每套 计费模式 本服务为一次性计费方式。 变更配置 本服务如已启动交付,不支持退订变更,用户可以根据自身业务的实际情况购买;如因下单购买规格错误,可支持退订。 续费 本服务为一次性交付方式,需要续费。如有新的需求,可重新按需新下单购买。

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlowJupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    OptVerse以开放API(Application Programming Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问调用API获取推理结果,帮助用户自动采集关键数据,打造智能化业务系统,提升业务效率。

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 推荐系统支持深度智能挖掘用户物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、

    来自:帮助中心

    查看更多 →

  • 列筛选

    单击“应用”,完成特征筛选。 查看筛选历史 单击特征工程操作界面的图标,弹框中自动展示已执行过的所有列筛选操作记录。支持单击某条记录,查看列筛选的执行结果。 重置筛选条件 单击特征操作界面的图标,回退列筛选操作。 父主题: PythonSpark开发平台

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了