AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习过拟合的原因 更多内容
  • 在ModelArts训练得到的模型欠拟合怎么办?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 调优典型问题

    由于以下几个原因导致,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了拟合。请检查训练参数中“训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 数据

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了拟合。请检查训练参数中 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 数据质量:请检查训练数据质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么盘古大模型微调效果不好

    不好 这种情况可能是由于以下原因导致,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型训练过程是否出现了问题,这种情况大概率是由于训练参数设置不合理而导致了欠拟合拟合。请检查训练参数中 “训练轮次”或“学习率”等参数设置,根据实际情况调整训练参数,帮助模型更好学习。

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    删除一部分输入特征,以防止模型拟合。这个值越大,删除特征越多,模型正则化效果越强,但同时也可能会降低模型拟合能力。取值范围:[0,1)。 给输入数据加噪音概率 定义了给输入数据加噪音概率。加噪音是一种正则化技术,它通过在输入数据中添加随机噪音来增强模型泛化能力。取值范围:[0

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型的回答中会出现乱码

    训练参数设置:若数据质量存在问题,且因训练参数设置不合理而导致拟合,该现象会更加明显。请检查训练参数中 “训练轮次”或“学习率”等参数设置,适当降低这些参数值,降低拟合风险。 推理参数设置:请检查推理参数中“温度”或“核采样”等参数设置,适当减小其中一个参数值,可以提升模型回答的确定性,避免生成异常内容。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    言模型中生成文本随机性和创造性,调整模型softmax输出层中预测词概率。其值越大,则预测词概率方差减小,即很多词被选择可能性增大,利于文本多样化。 多样性与一致性 多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应的不同输出之间的一致性。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型总是重复相同的回答

    为什么微调后盘古大模型总是重复相同回答 当您将微调模型部署以后,输入一个与目标任务同属问题,模型生成了复读机式结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致,建议您依次排查: 推理参数设置:请检查推理参数中“话题重复度控制”或“温度”或

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    如何调整训练参数,使盘古大模型效果最优 模型微调参数选择没有标准答案,不同场景,有不同调整策略。一般微调参数影响会受到以下几个因素影响: 目标任务难度:如果目标任务难度较低,模型能较容易学习知识,那么少量训练轮数就能达到较好效果。反之,若任务较复杂,那么可能就需要更多训练轮数。 数据量级:

    来自:帮助中心

    查看更多 →

  • 优化训练超参数

    优化训练超参数 模型微调超参数选择没有标准答案,不同场景,有不同调整策略。一般微调参数影响会受到以下几个因素影响: 目标任务难度:如果目标任务难度较低,模型能较容易学习知识,那么少量训练轮数就能达到较好效果。反之,若任务较复杂,那么可能就需要更多训练轮数。 数据量级:

    来自:帮助中心

    查看更多 →

  • 构建微调训练任务

    给输出数据加噪音概率,定义了给输出数据加噪音概率。加噪音是一种正则化技术,它通过在模型输出中添加随机噪音来增强模型泛化能力。 取值范围:[0,1]。 给输出数据加噪音尺度 给输出数据加噪音尺度,定义了给输出数据加噪音尺度。这个值越大,添加噪音越强烈,模型正则化效果越强,但同时也可能会降低模型的拟合能力。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    学习率决定每次训练中模型参数更新幅度。 选择合适学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练次数。每个轮次都会遍历整个数据集一次。 Lora矩阵轶 较高取值意味着更多参数被更新,模型具有更大灵活性,

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    步骤: 选择合适模型:根据任务目标选择适当模型。 模型训练:使用处理后数据集训练模型。 超参数调优:选择合适学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好性能。 开发阶段关键是平衡模型复杂度和计算资源,避免拟合,同时保证模型能够在实际应用中提供准确的预测结果。

    来自:帮助中心

    查看更多 →

  • 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同

    ,这种情况大概率是由于训练参数设置不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中 “训练轮次”或“学习率”等参数设置,适当增大“训练轮次”值,或根据实际情况调整“学习率”值,帮助模型更好收敛。 数据质量:请检查训练数据质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 方案概述

    悉昇腾对模型第三方库及算子支持情况,在迁移可行性分析中如果存在平台未支持算子,可通过修改模型脚本,使用等价支持算子替换方式解决,开发模型迁移脚本,实现GPU -> NPU接口替换、NPU分布式框架改造,适配模型关键功能,包括(可选)混合精度适配、环境变量和脚本配置等。对性能出现劣化情况,可以进行针对性调优

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了