AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的sota是指 更多内容
  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中清晰人脸上传至您后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔客流信息。 车牌识别技能 面向智慧商超车牌识别技能。

    来自:帮助中心

    查看更多 →

  • 概述

    Interface,应用程序编程接口)方式提供给用户,用户通过实时访问和调用API获取推理结果,帮助用户自动采集关键数据,打造智能化业务系统,提升业务效率。 您可以使用本文档提供天筹求解器服务API描述、语法、参数说明及样例等内容,进行相关操作,例如天筹求解器服务包含二维切割等具体接口使用说明。支持的全部操作请参见2

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    “课程学习记录”筛选项 筛选项 说明 课程名称 具体课程名称,支持模糊搜索 课程编号 具体课程编号,支持模糊搜索 课程类别 已配置好课程类别 学习状态 已完成 未完成 组织单元 用户组织单元分类 单选或多选中课程学习记录后点击左上角“导出”按钮,弹出导出提示框(如下图),点击蓝色跳转“这里”可查看具体导出内容

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 定时任务

    定时任务 定时学习任务学习任务升级功能。定时任务会按照设置好学习周期自动发布,减轻管理员工作量,减少重复工作。 入口展示 图1 入口展示 创建定时任务 操作路径:培训-学习-定时任务-【新建】 图2 新建定时任务 图3 基本信息 任务期限:当学员收到任务到任务结束时间 图4

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型训练生成模型进行

    来自:帮助中心

    查看更多 →

  • OPS01-01 建立持续学习和改进的文化

    OPS01-01 建立持续学习和改进文化 风险等级 高 关键策略 由于系统独特性和复杂性,没有放之四海皆准方案,为了达到卓越运营,需要不断改进这些最佳实践,并建立自己最佳实践。所以,在所有最佳实践第一条,就是在您团队中培养持续学习和改进文化。 而持续学习和改进需要鼓励团队沟

    来自:帮助中心

    查看更多 →

  • 开发者认证课程学习的形式是什么样的?

    开发者认证课程学习形式是什么样? 开发者认证课程学习分为在线视频学习和在线实验操作。 父主题: 开发者认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • GPU加速型

    NVLink技术,实现GPU之间直接通信,提升GPU之间数据传输效率。能够提供超高通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、分子建模、基因组学等领域都能表现出巨大计算优势。 规格 表8 P2vs型 弹性云服务器 规格 规格名称 vCPU

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 查询联邦学习作业列表 父主题: 空间API

    来自:帮助中心

    查看更多 →

  • 标准策略、极速策略和深度策略有哪些区别?

    标准策略、极速策略和深度策略有哪些区别? 漏洞管理服务提供支持以下3种网站扫描模式: “极速策略”:扫描网站URL数量有限且漏洞管理服务会开启耗时较短扫描插件进行扫描。 “深度策略”:扫描网站URL数量不限且漏洞管理服务会开启所有的扫描插件进行耗时较长遍历扫描。 “标准策

    来自:帮助中心

    查看更多 →

  • 自动学习训练后的模型是否可以下载?

    自动学习训练后模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调调整大型语言模型参数以适应特定任务过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现场景。这是通过在与任务相关微调数据集上训练模型来实现,所需微调量取决于任务复杂性和数据集大小。在深度学习中,微调用于改进预训练模型性能。 支持将平

    来自:帮助中心

    查看更多 →

  • 产品优势

    提供了更实时高效多样性算力,可支撑更丰富大数据处理需求。产品内核及架构深度优化,综合性能传统MapReduce模型百倍以上,SLA保障99.95%可用性。 图1 DLI Serverless架构 与传统自建Hadoop集群相比,Serverless架构DLI还具有以下优势:

    来自:帮助中心

    查看更多 →

  • 附录

    云容器引擎 CCE:CCE一种托管Kubernetes产品/服务,可进一步简化基于容器应用程序部署和管理,您可以在CCE中方便创建Kubernetes集群、部署您容器化应用,以及方便管理和维护。 volcano插件:Volcano一个基于Kubernetes批处理平台,提供

    来自:帮助中心

    查看更多 →

  • 大数据分析

    运行越来越多CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。 竞享实例应用 客户通过使用竞享实例来降低用云成本,并在预算范围内尽可能扩大集群规模,提升业务效率。客户要面对最大挑战一定概率实例终止情况,通过保留一定量按需实例作为竞享实例BackUP

    来自:帮助中心

    查看更多 →

  • 自动学习的每个项目对数据有哪些要求?

    适当增加训练数据,会提升模型精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景声音保持一致并且每类音频尽量覆盖真实环境所有场景。 训练集数据质量对于模型精度有很大影响,建议训练集音频采样率和采样精度保持一致。 标注质量对于最终模型精度有极

    来自:帮助中心

    查看更多 →

  • 超过最大递归深度导致训练作业失败

    超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认递归深度,导致训练失败。

    来自:帮助中心

    查看更多 →

  • 产品功能

    业,根据合作方已提供数据,编写相关sql作业并获取您所需要分析结果,同时能够在作业运行保护数据使用方数据查询和搜索条件,避免因查询和搜索请求造成数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供在保障用户数据安全前提下,利用多方数据实现联合建模,曾经被称为联邦机器学习。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了