超分辨率转换

超分辨率转换

    深度学习层压缩 更多内容
  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    Spark作业编辑页面 对于依赖的这个Python第三方库的压缩包有一定的结构要求,例如,PySpark程序依赖了模块moduleA(import moduleA),那么其压缩包要求满足如下结构: 图2 压缩包结构要求 即在压缩包内有一以模块名命名的文件夹,然后才是对应类的Python文

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 行列存压缩

    来讲,压缩级别越高,压缩比也越大,压缩时间也越长;反之亦然。实际压缩比取决于加载的表数据的分布特征。 table.compress.level指定表数据同一压缩级别下的不同压缩水平,它决定了同一压缩级别下表数据的压缩比以及压缩时间。对同一压缩级别进行了更加详细的划分,为用户选择压

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

  • 行存压缩系统函数

    行存压缩系统函数 pg_get_ilmdef(pidx integer) 描述:根据输入的ilm策略索引返回对应的策略信息。 返回值类型:text 表1 pg_get_ilmdef参数说明 参数类型 参数名 类型 描述 输入参数 pidx integer ilm策略的索引。 输出参数

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC,RCFile,TextFi

    来自:帮助中心

    查看更多 →

  • 应用场景

    。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三计算,完成千人千面的个性化媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中率高,用户粘性增强,PV增幅明显。 减少人工运营规则的摄入,减低人力成本。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度: 工作负载弹性伸缩:即调度弹性,主要是负责修改负载的调度容量变化。例如,HPA是典型的调度弹性组件,通过HPA可以调整应用的

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelArts集成了深度学习和机器

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 配置parquet表的压缩格式

    配置parquet表的压缩格式 配置场景 当前版本对于parquet表的压缩格式分以下两种情况进行配置: 对于分区表,需要通过parquet本身的配置项“parquet.compression”设置parquet表的数据压缩格式。如在建表语句中设置tblproperties:"parquet

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • zstd压缩算法有什么优势?

    zstd压缩算法有什么优势? 问: zstd压缩算法有什么优势? 答: ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式。 具体详细请参考https://github.com/L-Angel/compress-demo。

    来自:帮助中心

    查看更多 →

  • 配置parquet表的压缩格式

    配置parquet表的压缩格式 配置场景 当前版本对于parquet表的压缩格式分以下两种情况进行配置: 对于分区表,需要通过parquet本身的配置项“parquet.compression”设置parquet表的数据压缩格式。如在建表语句中设置tblproperties:"parquet

    来自:帮助中心

    查看更多 →

  • 方案概述

    迁移难度大:AI模型迁移面临算子、框架、模型等多技术体系,迁移过程中遇到算子不适配场景难以解决,迁移后模型需要进行准确和性能调优,依赖专家经验进行模型分析与调优。 开发环境复杂:AI开发面临算子、模型、应用使能等多技术体系的熟悉,学习难;AI现场开发过程中常会遇到难点

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    T:15:海温(℃) S:15:海盐(PSU) U:15:海流经向速率 (ms-1) V:15:海流纬向速率 (ms-1) 海表变量 海表变量用于描述海洋表和其上方大气的状态的关键物理量。它们主要用于模拟和分析海洋表面的风速、温度、和气压等特征。 U10:1:海表面10m经向风速(ms-1)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了