AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习cpu选择 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    诊断异常项(示例) 深度诊断结论 诊断项ID 诊断项名称 诊断结论 guestos.cpu.high_total_usage 总CPU占用率过高 实例整体CPU占用率已超过80%。 guestos.cpu.high_process_usage CPU使用率过高的进程 单进程CPU占用率超过整机的50%。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 准备工作

    Online,单击“创建实例”。 如果提示未开通则根据提示跳转至开通页面完成服务开通。 进入“基础配置”页面,选择Python技术栈,CPU架构选择X86计算,CPU/内存选择2U4G,单击“下一步”。 进入“工程配置”页面,选择不创建工程,然后单击“确定”,完成实例创建。 安装TensorFlow 进入CodeArts

    来自:帮助中心

    查看更多 →

  • CPU调度

    CPU调度 CPU管理策略 增强型CPU管理策略 父主题: 调度

    来自:帮助中心

    查看更多 →

  • CPU检查

    判断cpu核数是否满足IEF要求。edgectl check cpu无检查CPU:示例执行结果:

    来自:帮助中心

    查看更多 →

  • 迁移学习

    w名字一致。 绑定源数据 进入迁移数据JupyterLab环境编辑界面,运行“Import sdk”代码框。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 特征准备 > 绑定源数据”。界面新增“绑定迁移前的源数据”内容。 对应参数说明,如表1所示。 表1 参数说明 参数

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 计算服务选型

    搭载T4卡,图像加速 3D动画渲染、CAD p 搭载V100卡,计算加速 AI深度学习、科学计算 pi 搭载T4卡,推理加速 实时推理+轻量级训练 AI加速型 Intel ai 搭载昇腾310芯片,计算加速或推理加速 深度学习、科学计算、CAE ARM 鲲鹏通用计算增强型 鲲鹏 kc 与c系列相比,采用鲲鹏处理器,价格更低

    来自:帮助中心

    查看更多 →

  • 约束与限制

    云容器实例当前支持使用GPU,您可以根据需要选择,实例收费详情请参见产品价格详情。 当不使用GPU时,Pod规格需满足如下要求: 表1 Pod规格限制要求 Pod规格限制项 限制取值范围 Pod的CPU 0.25核-32核,或者自定义选择48核、64核。 CPU必须为0.25核的整数倍。 Pod的内存

    来自:帮助中心

    查看更多 →

  • CPU管理策略

    在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置(cpu-manager-policy)参数值,选择static。 单击“确定”,完成配置操作。 为Pod设置独占CPU Pod设置独占CPU(即CPU绑核)有如下几点要求: 节点上开启静态(static)CPU管理策略,具体方法请参见为

    来自:帮助中心

    查看更多 →

  • 学习任务

    图3 基础信息 选择模式 自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式中暂时不支持添加线下课和岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择学习任务学习的具体学员 图6 指派范围1 图7 指派范围2

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择、样本对齐(可选)、特征选择(可选)、模型训练、模型评估。

    来自:帮助中心

    查看更多 →

  • CPU管控

    CPU管控 GS_263200040 错误码: Cgroup failed to attach (tid %d) into "%s" group: %s(%d). 解决方案:请确认控制组%s的路径是否已被更改或删除了。 level: WARNING 父主题: WLM

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 模型选择

    模型选择 目前,学件已经集成了几十维到上百维不同种类的特征库,源于历史各类Case和通用KPI异常检测的算法库。通过数据的特征画像,可以实现自动化的特征推荐和算法推荐。 单击“特征画像”左下方的“模型选择”。 新增“模型选择”内容,如图1所示。 图1 模型选择 单击“模型选择”代码框左侧的图标,运行代码。

    来自:帮助中心

    查看更多 →

  • 选择数据

    选择数据 在使用通用文本分类工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在 自然语言处理 套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择

    来自:帮助中心

    查看更多 →

  • 选择数据

    选择数据 在使用零售商品识别工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于零售商品识别工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视觉套件控制台选择

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了