AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 样本量 更多内容
  • 查询样本对齐结果

    String 样本对齐运行状态。 NEW, ACCEPTED, RUNNING, SUCCEEDED, FAILED, TERMINATED, PENDING, SUBMITING, DEPLOYING, TERMINATING; data_count Long 样本对齐数据 obs_path

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供文本、图像、音频、视频等内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测。 稳定可靠 内容审核 服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    样本”或“学习案例样本”页签,单击样本下方的/。 单个下载样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的或单击样本,在样本详情页面单击样本中的 按任务归类 单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 产品优势

    ark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。 简单易用 不单独维护小资源池,使用华

    来自:帮助中心

    查看更多 →

  • 管理样本库

    删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏中的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏中的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。

    来自:帮助中心

    查看更多 →

  • 产品功能

    询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习 可信智能计算服务 提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算 节点 数据参与

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据很高,有的类别数据较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)的联邦计算; 支持控制流和数据流的分离

    来自:帮助中心

    查看更多 →

  • 最新动态

    出id前缀相符的数据,达到减少数据的目的 纵向联邦作业在特征选择时,分箱选择支持“等距分箱”。等距分箱是指经过计算使得每个箱体的区间间隔保持一致。补充。 公测 创建纵向联邦学习作业 2021年6月 序号 功能名称 功能描述 阶段 相关文档 1 联邦分析引入PSI和同态加密算法

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 计费说明

    。普通场景工作预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。复杂场景工作预计不超过25人天 900,000.00 每套 AI算法原型开发-铂金版

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    collect_rule String 样本收集规则,默认为全收集规则“all”。当前仅支持全收集规则“all”。 collect_sample Boolean 是否启用样本收集。可选值如下: true:启用样本收集(默认值) false:不启用样本收集 confidence_scope String

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 为什么多轮问答场景的盘古大模型微调效果不好 数据足够,为什么盘古大模型微调效果仍然不好 数据和质量均满足要求,为什么盘古大模型微调效果不好

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 查询单个样本详情

    查询单个样本详情 根据样本ID查询数据集中指定样本的详细信息。 dataset.get_sample_info(sample_id) 示例代码 根据ID查询数据集中样本的详细信息 from modelarts.session import Session from modelarts

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了