AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 训练好的模型 更多内容
  • 信息技术人才培养

    教学、方便快捷、低成本高安全云在线学习平台,实现课堂教学集中化、实智能化、维护简单化,将教育带入云时代,带来最佳教学体验,引发学生自主学习,应用全新教学理念,构建全新教学模式,助力教学未来改革新模式,专注于培养ICT人才。 实云平台整合培训认证服务、课程资源、

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    如,图像分类、物体检测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据,数据准备是AI开发一个基础。此时最重要是保证获取数据真实可靠性。而事实上,不能一次性将

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 训练模型

    果而言。含义为在被预测为正样本中实际为正样本概率。 recall:召回率,又被称为查全率,是针对原样本而言。含义为在实际为正样本中被预测为正样本概率。 support:每类标签出现次数。 模型训练完成后,可以查看归档模型文件,如模型训练目录说明所示。 模型训练目录说明

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    操作步骤-手机端: 登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    Gallery深谙开发者在人工智能项目推进过程中面临实际困难,尤其是高昂模型训练与部署成本,这往往成为创意落地阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳算力组合方案,为开发者在开发模型最后一步,提供最佳实践算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题:

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    1]之间,是机器学习领域里常用二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解机器学习算法,能够自动进行二阶特征组合、学习特征之间关系,无需人工经验干预,同时能够解决组合特征稀疏问题。FM算法参数请参见因子分解机。 域感知因子分解机是因子分解机改进版

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量 定义每个特征切分点数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。

    来自:帮助中心

    查看更多 →

  • 查看作业详情

    查看作业详情 如何查看训练作业资源占用情况? 如何访问训练作业后台? 两个训练作业模型都保存在容器相同目录下是否有冲突? 训练输出日志只保留3位有效数字,是否支持更改loss值? 训练好模型是否可以下载或迁移到其他账号?如何获取下载路径? 父主题: Standard训练作业

    来自:帮助中心

    查看更多 →

  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中清晰人脸上传至您后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔客流信息。 车牌识别技能 面向智慧商超车牌识别技能。

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 应用场景

    买了又买等推荐场景,但各个子场景运营规则均不一致。 RES提供一站式电商推荐解决方案,在一套数据源下,支持多种电商推荐场景,提供面向电商推荐场景多种推荐相关算法和大数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。

    来自:帮助中心

    查看更多 →

  • ModelArts

    Gallery。 订阅免费模型 发布免费模型 数据集分享和下载 AI Gallery资产集市提供了数据集分享和下载。订阅者可在AI Gallery搜索并下载满足业务需要数据集,存储至当前帐号OBS桶或ModelArts数据集列表。分享者可将已处理过数据集发布至AI Gallery。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    一句话识别 可以实现1分钟以内音频到文字转换。对于用户上传二进制音频格式数据,系统经过处理,生成语音对应文字,支持语言包含中文普通话、方言以及英语。方言当前支持四川话、粤语和上海话。 产品优势 高识别率 基于深度学习技术,对特定领域场景 语音识别 进行优化,识别率达到业界领先。

    来自:帮助中心

    查看更多 →

  • 产品优势

    支持在分布式、信任边界缺失多个参与方之间建立互信空间; 实现跨组织、跨行业多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如 MRS DLI 、 RDS、 Oracle等)联合数据分析; 支持对接多种深度学习框架( TICS ,TensorFlow)联邦计算;

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了