GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习 推理 gpu选型 更多内容
  • 资源准备

    面中配置节点的参数。 选择一个“GPU加速型”的节点规格,其余参数请根据实际需求填写,详情请参见创建节点。 完成配置后,单击“下一步:规格确认”,确认所设置的服务选型参数、规格和费用等信息,并单击“提交”,开始创建节点。 待GPU节点创建完成后,可前往“节点列表”查看节点状态。 导入OBS存储卷

    来自:帮助中心

    查看更多 →

  • 迁移过程使用工具概览

    运行在MindSpore运行时后端,用于昇腾推理。 精度性能检查工具 Benchmark精度检查工具,可以转换模型后执行推理前,使用其对MindSpore Lite模型进行基准测试,它不仅可以对MindSpore Lite模型前向推理执行耗时进行定量分析(性能),还可以通过指定模型输出进行可对比的误差分析(精度)。

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 M

    来自:帮助中心

    查看更多 →

  • 云端推理

    json”文件,将红框内名字改成实际推理文件文字,如图2所示。 图2 修改metadata.json 在Webide编辑界面左侧代码目录空白区域右键单击鼠标,选择“NAIE Package”。 返回模型管理界面,单击模型包所在行,对应“操作”列图标,弹出“发布推理服务”对话框。 请根据实际

    来自:帮助中心

    查看更多 →

  • 推理服务

    推理服务 云端推理框架提供模型云端运行框架环境,用户可以在线验证模型推理效果,无须从零准备计算资源、搭建推理框架,只需将模型包加载到云端推理框架,一键发布成云端Web Service推理服务,帮助用户高效低成本完成模型验证。 其中,“推理服务”主界面默认展示所有推理服务,用户可查

    来自:帮助中心

    查看更多 →

  • 模型推理

    模型推理 将数据输入模型进行推理推理结束后将推理结果返回。 接口调用 virtual HiLensEC hilens::Model::Infer(const InferDataVec & inputs, InferDataVec & outputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • 模型推理

    模型推理 模型初始化成功后,调用infer接口进行模型推理。灌入一组数据,并得到推理结果。输入数据的类型不是uint8或float32数组组成的list将会抛出一个ValueError。 接口调用 hilens.Model.infer(inputs) 参数说明 表1 参数说明 参数名

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • 约束与限制

    对镜像大小的约束限制。 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至AI应用列表中。但是自动学习生成的AI应用无法下载,只能用于部署上线。 Standard推理服务部署 只支持使用专属资源池部署的在线服务使用CloudShell访问推理容器,且在线服务必须处于“运行中”状态。

    来自:帮助中心

    查看更多 →

  • 什么是云容器引擎

    弹性伸缩:支持工作负载和节点的弹性伸缩,可以根据业务需求和策略,经济地自动调整弹性计算资源的管理服务服务治理:深度集成应用服务网格,提供开箱即用的应用服务网格流量治理能力,用户无需修改代码,即可实现灰度发布、流量治理和流量监控能力。 容器运维:深度集成容器智能分析,可实时监控应用及资源,支持采集、管理、分析日

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    python3.6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。 默认使用的Runtime为python2.7。 默认启动命令:sh /home/mind/run

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    选择命名空间,如未创建,单击“创建命名空间”。命名空间类型分为“通用计算型”和“GPU加速型”: 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 访问密钥 单击“点击上传”,

    来自:帮助中心

    查看更多 →

  • 最新动态

    人脸检测技能 面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的清晰人脸上传至您的后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超的客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔的客流信息。 车牌识别技能

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • ModelArts

    Standard创建AI应用部署在线服务 自定义镜像用于推理部署 从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    当开发者对希望对模型进行开发和训练,AI Gallery为零基础开发者,提供无代码开发工具,快速推理、部署AI应用;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代码即可调用任何模型,大幅度降低了模型开发门槛。

    来自:帮助中心

    查看更多 →

  • 异步推理

    在“模型仓库”页面单击导入模型包对应的“”,发布推理服务,如图7所示。 图7 发布推理服务 在“发布推理服务”页面配置“计算节点规格”等信息,单击“确定”,如图8所示。 图8 配置推理服务发布信息 单击推理服务菜单栏的“推理服务”,查看模型包推理服务部署进展,如图9所示。 图9 推理服务部署 待推理服务部署完成,左

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了