资源编排服务 RFS

资源编排服务 RFS

资源编排服务是完全支持业界事实标准Terraform(HCL + Provider)的新一代云服务资源终态编排引擎,在应用编排服务(AOS)基础上实现了生态、体验、特性的全新升级;资源编排服务基于业界开放生态HCL语法模板,实现云服务资源的自动化批量构建,帮助用户高效、安全、一致创建、管理和升级云服务资源,能有效提升资源管理效率,并降低资源管理变更带来的安全风险。

资源编排服务是完全支持业界事实标准Terraform(HCL + Provider)的新一代云服务资源终态编排引擎,在应用编排服务(AOS)基础上实现了生态、体验、特性的全新升级;资源编排服务基于业界开放生态HCL语法模板,实现云服务资源的自动化批量构建,帮助用户高效、安全、一致创建、管理和升级云服务资源,能有效提升资源管理效率,并降低资源管理变更带来的安全风险。

本服务免费使用,被编排资源需单独收费,具体费用以官网公布的价格为准。

    深度学习 图像模板匹配 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 应用场景

    应用场景 内容审核 -图像 内容审核-图像有以下应用场景: 视频直播 在互动直播场景中,成千上万个房间并发直播,人工审核直播内容几乎不可能。基于图像审核能力,可对所有房间内容实时监控,识别可疑房间并进行预警。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    .0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、语音识别、 机器翻译 编程实验 与图像识别、语言识别、机器翻译编程相关的实验操作

    来自:帮助中心

    查看更多 →

  • 图像搜索

    时访问和调用API获取图像搜索结果,帮助用户在图像库中进行相同或相似图像搜索。 API文档 添加数据 搜索数据 检查数据 更新数据 删除数据 02 入门 通过使用图像搜索服务的通用图片搜索功能,查找出图片库中与本地存储的图片相匹配的图片信息。 快速使用图像搜索 调用API实现功能

    来自:帮助中心

    查看更多 →

  • TensorFlow图像分类模板

    TensorFlow图像分类模板 简介 搭载TensorFlow1.8引擎,运行环境为“python2.7”,适合导入以“SavedModel”格式保存的TensorFlow图像分类模型。该模板使用平台预置的图像处理模式,模式详情参见预置图像处理模式,推理时向模型输入一张“key

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现图像分类

    使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    提升业务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容

    来自:帮助中心

    查看更多 →

  • 常用概念

    更多信息请参见SMN帮助中心。 转码模板 转码模板是转码参数(音频、视频、容器等)的集合。媒体处理涉及协议、分辨率、码率等多种音视频参数,在使用转码功能时选择模板可以节省大量的配置动作。用户在转码时可以选择系统预置的模板,也可以自定义转码模板。 高清低码 指基于华为转码技术,根据人眼视觉感知模型,

    来自:帮助中心

    查看更多 →

  • 括号匹配

    括号匹配 当光标靠近其中一个括号,匹配的括号就会高亮显示。您可以使用“Ctrl+Shift+\”跳转到匹配的括号。 父主题: 代码导航

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 概要

    pyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 基本概念

    系列芯片的技能。 HiLens Kit 华为HiLens开发套件。也可以专门代表集成了华为海思昇腾芯片,高性能推理能力,支持基于深度学习技术,实现图像、视频的分析、推理的智能推理摄像机,帮助用户快速安装、部署多种AI技能。 HiLens Framework 封装基础开发组件,为开

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 概述

    用API获取图像搜索结果,帮助用户在图像库中进行相同或相似图像搜索。 您可以使用本文档提供图像搜索服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如图像搜索包含的创建实例、搜索图片和删除图片等具体接口使用说明。支持的全部操作请参见API概览。 在调用图像搜索API之

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    Search)提供通用场景下的相同或相似图像搜索能力,针对入库的图像数据提供一站式的通用化搜索能力,目前包括图像检索图像、关键词检索图像、文本检索图像。 商品搜索 商品搜索(E-commerce Search)提供电商场景下的搜索能力,目前包括通用商品搜索和服装商品搜索。通用商品搜索,旨在针对入库的图像数据提供

    来自:帮助中心

    查看更多 →

  • 问答模型训练(可选)

    旗舰版机器人默认支持重量级深度学习。 专业版和高级版机器人如果需要使用重量级深度学习,需要先单击“重量级深度学习”,然后单击“联系我们”。 图2 重量级深度学习 编辑模型信息。 轻量级深度学习:选填“模型描述”。 图3 轻量级深度学习 重量级深度学习:选择量级“中量级”或“重量级”,选填“模型描述”。

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了