AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 梯度计算 更多内容
  • 保存纵向联邦作业

    预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent 否 String 标签方可信计算节点,最大长度100 batch_size 否 Integer lr批大小,最小值1

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦分箱和IV计算作业

    执行纵向联邦分箱和IV计算作业成功 { "job_instance_id" : "7b0df147d6464ef2877b22f6d964d274" } 状态码 状态码 描述 200 执行纵向联邦分箱和IV计算作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    内置大量生物医疗领域标准分析流程,并结合华为特有的高性能云计算,多样性算力,大数据等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    itting)的问题。 学习率衰减比率 学习率衰减后的比率,用于控制训练过程中学习率的下降幅度。经过衰减后,学习率的最低值由初始学习率和衰减比率决定。其计算公式为:最低学习率 = 初始学习率 * 学习率衰减比率。也就是说,学习率在每次衰减后不会低于这个计算出来的最低值。 热身比例

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 5G消息 Message over 5G

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • GPU加速型

    GPU,在提供 云服务器 灵活性的同时,提供高性能计算能力和优秀的性价比。P2s型 弹性云服务器 能够提供超高的通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算计算流体动力学、计算金融、地震分析、分子建模、基因组学等领域都能表现出巨大的计算优势。 规格 表9 P2s型弹性云服务器的规格

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业

    来自:帮助中心

    查看更多 →

  • 路网数字化服务-成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • 模型NPU卡数、梯度累积值取值表

    模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)

    来自:帮助中心

    查看更多 →

  • 模型NPU卡数、梯度累积值取值表

    模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)

    来自:帮助中心

    查看更多 →

  • NPU_Flash_Attn融合算子约束

    NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask

    来自:帮助中心

    查看更多 →

  • NPU_Flash_Attn融合算子约束

    NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask

    来自:帮助中心

    查看更多 →

  • NPU_Flash_Attn融合算子约束

    NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn

    来自:帮助中心

    查看更多 →

  • NPU_Flash_Attn融合算子约束

    NPU_Flash_Attn融合算子约束 query、key、value都需要梯度。默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 产品功能

    动态构建可信计算空间,实现空间内严格可控的数据使用和监管。空间是联邦计算的载体,合作方只有加入空间才能参与联邦计算。 安全的作业管理 作业时,数据使用的过程可审计、可追溯。 TICS 数据集成支持多方安全计算、可信联邦学习和联邦预测作业等作业方式。 多方安全计算 多方安全计算是可信智能

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 产品概述

    可信智能计算服务TI CS ( Trusted Intelligent Computing Service )打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、 区块链 等技术,实现了数据在存储、流通、计算过程中端到

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了