AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    深度学习 特征生成 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    分身数字人声音制作算法是指使用深度学习算法生成数字人声音模型,再使用该模型通过输入文字生成数字人语音的一种技术。 其基本情况包括: 输入数据:真人语音音频 。 算法原理:通过深度学习算法,学习真人语音音频生成数字人声音模型,通过该模型,输入文本生成数字人语音。 输出结果:接近真人音色的数字人语音。

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 排序策略

    路径不能包含中文。 核函数特征交互神经网络-PIN 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘来计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

  • 产品优势

    盘古大模型通过海量数据训练,能够捕捉更多语言规律和特征,在各类处理任务中表现出色。无论是生成文章、撰写报告,还是设计广告文案,盘古大模型都能根据输入需求灵活调整,生成符合预期的高质量内容。 推理速度快 盘古大模型采用了高效的深度学习架构和优化算法,显著提升了推理速度。在处理请求时,模型能够更快地生成结果,减少等待时

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    “FiBiNET”算法新增限制: 特征方必须要有两个及以上离散特征,连续特征可有可无。 标签方可以不提供任何特征,如果标签方提供特征也要遵循1规则。 其他算法无限制 选择完成后单击“下一步”。 在所选数据集中只能有一个字段是标签。 训练时需勾选使用的特征选项,勾选后可以跳过特征分箱,直接进行训练。

    来自:帮助中心

    查看更多 →

  • 特征操作

    检查“已选择特征”是否为用户选择的特征列。 配置“变换特征数”,保留指定“变换特征数”的特征列。 单击“确定”,执行信息熵。 在“特征操作流总览”区域会新增一个“信息熵”节点。 新增特征 新增特征支持用户基于已有的特征列,按照样本数据行的维度,通过求和、求均值,构造出新的特征列。例如,两个特征列ID1(2

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 应用场景

    数据统计分析能力。 场景优势 能够精确匹配电商运营规则。 最近邻算法与深度学习的结合,挖掘用户高维稀疏特征,匹配最佳推荐结果。 融合多种召回策略,网状匹配兴趣标签。 改善用户体验,同时降低人工成本。 画像与深度模型结合,助力营收收益增长。 图1 RES电商推荐 RES+媒资应用场景

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程中已经预置了两个特征处理工程,这里暂不使用,会提供端到端的操作流程,帮助用户快速熟悉特征工程界面操作。 如果需要了解特征工程操作详情,可查看模型训练服务《用户指南》中的“特征工程”章节内容。 无故障硬盘训练数据集特征处理 单击菜单栏中的“特征工程”,进入特征工程首页,如图1所示。

    来自:帮助中心

    查看更多 →

  • 特征工程

    行为表。 全局特征信息文件 用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 产品术语

    数据集的实例,有具体的数据。 T 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLa

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了