AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 特征筛选 更多内容
  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 特征选择

    参数说明 列筛选方式 特征列的筛选方式,有如下两种: 列选择 正则匹配 列名 列筛选方式为“列选择”时展示,如果有多列特征数据需要删除,可单击“”同时选中多列特征名称。 正则表达式 列筛选方式为“正则匹配”时展示,请根据实际情况输入正则表达式,系统自动筛选符合正则筛选规则的所有特征列。 当前操作流

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    “FiBiNET”算法新增限制: 特征方必须要有两个及以上离散特征,连续特征可有可无。 标签方可以不提供任何特征,如果标签方提供特征也要遵循1规则。 其他算法无限制 选择完成后单击“下一步”。 在所选数据集中只能有一个字段是标签。 训练时需勾选使用的特征选项,勾选后可以跳过特征分箱,直接进行训练。

    来自:帮助中心

    查看更多 →

  • 特征操作

    即卡方值)筛选出有价值的特征列。将卡方值由小到大排序,筛选出TOPN的特征列: 特征列与标签列之间的偏离程度越大,卡方值越大,说明特征列与标签列不符 特征列与标签列之间的偏离程度越小,卡方值越小,说明特征列越接近于标签列 如果特征列与标签列完全相等,卡方值为0,说明特征列与标签列完全符合

    来自:帮助中心

    查看更多 →

  • 特征画像

    。这些类别,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据和数据的密

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 筛选资源

    关的一个标签值或所有标签值,资源列表将自动筛选并展示此标签关联的资源。 企业项目 通过企业项目筛选框选择企业项目,资源列表将自动筛选并展示此企业项目下的资源。 说明: 根据企业项目筛选资源的功能必须要先开通企业项目才可以使用,因此该筛选条件并非对每个用户可见。 操作步骤 登录管理控制台。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    分解机每个特征对其他域的隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而

    来自:帮助中心

    查看更多 →

  • 列筛选

    筛选 “列筛选筛选的是特征列。如果用户需要重点查看分析特定特征列,可以通过列筛选完成。 列筛选操作步骤如下。 列筛选 单击特征工程操作界面的,弹出“列筛选”对话框,如图1所示。 图1 列筛选 其中,界面说明如下所示: 筛选规则名称:为即将设置的筛选规则设置名称。 筛选成功后,

    来自:帮助中心

    查看更多 →

  • 数据筛选

    数据筛选 “数据筛选”组件对传入该组件的数据按照指定的表达式进行筛选,并将筛选出的结果通过节点变量传递给后续节点。通常“数据筛选”组件会作为“数据拆分”组件的后续步骤以配合使用。 配置参数 参数 说明 表达式 数据筛选的表达式。 使用表达式对数据进行筛选,并传递给后续节点。例如数

    来自:帮助中心

    查看更多 →

  • 筛选组件

    筛选组件 在图层中,支持按组件名称、组件标题和组件类型进行筛选,帮助您更加高效的选择所需要的组件。 筛选组件 参考创建页面中操作,创建所需的页面。 选择“图层”,进入图层页面。 在图层中,单击,筛选组件。 图1 筛选组件 父主题: 图层管理

    来自:帮助中心

    查看更多 →

  • 基本概念

    可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧版体验

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 数据筛选

    数据筛选 “数据筛选”组件对传入该组件的数据按照指定的表达式进行筛选,并将筛选出的结果通过节点变量传递给后续节点。通常“数据筛选”组件会作为“数据拆分”组件的后续步骤以配合使用。 配置参数 参数 说明 表达式 数据筛选的表达式。 使用表达式对数据进行筛选,并传递给后续节点。例如数

    来自:帮助中心

    查看更多 →

  • 标签筛选

    标签筛选 在场景、逻辑场景和测试用例,以及添加场景、逻辑场景和测试用例时,可以通过标签筛选,快速筛选出场景或用例。 标签筛选 在左侧菜单栏中单击“仿真服务 > 场景管理”。 在页面中单击“标签筛选”。 在筛选框中输入内容,查找目标标签。也可在左侧标签树列表中选择目标标签。 勾选左

    来自:帮助中心

    查看更多 →

  • 筛选条件

    筛选条件 创建筛选条件 添加筛选条件入/出方向规则 修改筛选条件入/出方向规则 删除筛选条件入/出方向规则 修改筛选条件基本信息 查看筛选条件 删除筛选条件 父主题: 流量镜像

    来自:帮助中心

    查看更多 →

  • 执行作业

    横向评估型作业在作业配置页面单击“保存”按钮后,可以直接单击“执行”按钮。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的作业,单击“执行”,系统自动跳转到“历史作业”页面。 图1 执行作业 等待执行完成,在“历史作

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了