AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 读取训练图像 更多内容
  • ModelArts入门实践

    ModelArts Standard自动学习 使用Standard自动学习实现垃圾分类 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“图像分类”AI模型的训练和部署。 面向AI开发零基础的用户

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情

    来自:帮助中心

    查看更多 →

  • 图像搜索

    云容器引擎-成长地图 | 华为云 图像搜索 图像搜索(ImageSearch)基于深度学习图像识别技术,结合不同应用业务和行业场景,利用特征向量化与搜索能力,帮助客户从指定图库中搜索相同或相似的图片。 免费体验 图说E CS 立即使用 立即使用 成长地图 由浅入深,带您玩转ImageSearch

    来自:帮助中心

    查看更多 →

  • 准备图像分类数据

    需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题: 使用自动学习实现图像分类

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 功能介绍

    网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持多机多卡环境下的模型分布式训练,大幅度提升模型训练的速度,满足海量样本数据加速训练的需求。 图17

    来自:帮助中心

    查看更多 →

  • 概述

    用API获取图像搜索结果,帮助用户在图像库中进行相同或相似图像搜索。 您可以使用本文档提供图像搜索服务API的描述、语法、参数说明及样例等内容,进行相关操作,例如图像搜索包含的创建实例、搜索图片和删除图片等具体接口使用说明。支持的全部操作请参见API概览。 在调用图像搜索API之

    来自:帮助中心

    查看更多 →

  • 什么是图像搜索

    Search)提供通用场景下的相同或相似图像搜索能力,针对入库的图像数据提供一站式的通用化搜索能力,目前包括图像检索图像、关键词检索图像、文本检索图像。 商品搜索 商品搜索(E-commerce Search)提供电商场景下的搜索能力,目前包括通用商品搜索和服装商品搜索。通用商品搜索,旨在针对入库的图像数据提供

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 基本概念

    系列芯片的技能。 HiLens Kit 华为HiLens开发套件。也可以专门代表集成了华为海思昇腾芯片,高性能推理能力,支持基于深度学习技术,实现图像、视频的分析、推理的智能推理摄像机,帮助用户快速安装、部署多种AI技能。 HiLens Framework 封装基础开发组件,为开

    来自:帮助中心

    查看更多 →

  • ModelArts最佳实践案例列表

    LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导 预训练、SFT全参微调训练、LoRA微调训练 介绍主

    来自:帮助中心

    查看更多 →

  • 批量更新样本标签

    。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 批量更新团队标注样本的标签

    。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 数据集版本不合格

    是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有

    来自:帮助中心

    查看更多 →

  • 计费说明

    服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • ModelArts自动学习与ModelArts PRO的区别

    ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造

    来自:帮助中心

    查看更多 →

  • 查询单个样本信息

    。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

  • 更新团队标注验收任务状态

    。 8:图像的饱和度与训练数据集的特征分布存在较大偏移。 9:图像的色彩丰富程度与训练数据集的特征分布存在较大偏移。 10:图像的清晰度与训练数据集的特征分布存在较大偏移。 11:图像的目标框数量与训练数据集的特征分布存在较大偏移。 12:图像中目标框的面积标准差与训练数据集的特征分布存在较大偏移。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了