AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度强化学习dqn 更多内容
  • 内网发现与采集

    为确保采集过程具备充分的系统访问权限,从而能够获取到必要的信息和数据。对主机深度采集的凭证要求如下: 对Linux主机进行深度采集时,请添加Root账号和密码作为采集凭证。 对Windows主机进行深度采集时,请添加Administrator账号和密码作为采集凭证。 创建内网采集任务

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持llama3系列。 PPO训练暂不支持llama3-70B,存在已知的内存OOM问题,待社区版本修复。 训练策略类型 全参full,配置如下:

    来自:帮助中心

    查看更多 →

  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型

    来自:帮助中心

    查看更多 →

  • 执行训练任务

    yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    机器人版本说明 功能列表 基础版 高级版 专业版 旗舰版 管理问答语料 √ √ √ √ 实体管理 √ √ √ √ 问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息

    来自:帮助中心

    查看更多 →

  • 目录配额

    跨配额目录红线所示,会穿过黑色虚线。 配额目录: D1,D2_0。 目录深度:根目录/往下到当前目录的层数,例如,目录/D1/D2_0/D3_1深度为4。 配额目录深度:当前目录不断往上找,穿过黑色矩形虚线的层数。例如,目录/D1/D2_0/D3_1配额目录深度为2。 红线与绿线:mv或者link操作,绿色表示允许操作,红色表示不允许操作。

    来自:帮助中心

    查看更多 →

  • 管理SFS Turbo目录配额

    跨配额目录红线所示,会穿过黑色虚线。 配额目录: D1,D2_0。 目录深度:根目录/往下到当前目录的层数,例如,目录/D1/D2_0/D3_1深度为4。 配额目录深度:当前目录不断往上找,穿过黑色矩形虚线的层数。例如,目录/D1/D2_0/D3_1配额目录深度为2。 红线与绿线:mv或者link操作,绿色表示允许操作,红色表示不允许操作。

    来自:帮助中心

    查看更多 →

  • 配置代码下载

    CommitID在代码仓库中显示如图1。 图1 CommitID 克隆深度 可选参数。 克隆深度是指距离最近一次提交的提交次数,该值越大,检出代码的深度越深。深度为正整数,推荐最大深度为25。 例如:克隆深度5就表示只克隆最新5次提交记录以及提交之后的最新内容,不克隆历史提交。 子模块(submodules)自动更新

    来自:帮助中心

    查看更多 →

  • SQL审核

    类SQL的深度审核,且支持规则内风险级别、阈值及建议内容的调整,和规则间的自由组合创建定制化审核模板。支持 GaussDB 、MySQL和PostgreSQL三种数据库的审核,可通过单语句、批量代码文件上传(自动提取SQL)、直连数据库,共3种方式接入SQL进行审核,深度看护代码,避免烂SQL流入生产环境。

    来自:帮助中心

    查看更多 →

  • 查询账单时,为什么会有大量的公网流出流量?

    出流量费用。 归档存储公网流出流量:恢复归档存储对象后,通过互联网下载归档存储对象所产生的流出流量费用。 深度归档存储公网流出流量:恢复深度归档存储对象后,通过互联网下载深度归档存储对象所产生的流出流量费用。 如果要减少公网流出流量,可以按照以下方法: 检查桶是否开启了公共读 如

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图

    来自:帮助中心

    查看更多 →

  • 成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 基因容器基于Kubernetes智能化基因计算任务调度和Spark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。

    来自:帮助中心

    查看更多 →

  • 配置生命周期规则

    转换为深度归档存储天数:指定在对象最后一次更新后多少天,受规则影响的对象将转换为深度归档存储。如果同时设置转换为低频访问存储和转换为深度归档存储,则转换为深度归档存储的时间要比转换为低频访问存储的时间至少长30天。如果同时设置转换为归档存储和转换为深度归档存储,则转换为深度归档存

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习、深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 存储类别简介

    修改。 存储类别对比 对比项目 标准存储 低频访问存储 归档存储 深度归档存储(受限公测) 特点 高性能、高可靠、高可用的 对象存储服务 高可靠、较低成本的实时访问存储服务 归档数据的长期存储,存储单价更优惠 深度归档数据的长期存储,存储单价相比归档存储更优惠 应用场景 云应用、数据分享、内容分享、热点对象

    来自:帮助中心

    查看更多 →

  • 转换桶和对象的存储类别

    转换为深度归档存储天数:指定在对象最后一次更新后多少天,受规则影响的对象将转换为深度归档存储。如果同时设置转换为低频访问存储和转换为深度归档存储,则转换为深度归档存储的时间要比转换为低频访问存储的时间至少长30天。如果同时设置转换为归档存储和转换为深度归档存储,则转换为深度归档存

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了