AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    矩阵分解+深度学习+区别 更多内容
  • 创建科学计算大模型训练任务

    以调整学习率。取值范围:(0,1)。 权重衰减系数 用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    json” 。 低秩适应(LoRA)是一种重参数化方法,旨在减少具有低秩表示的可训练参数的数量。权重矩阵分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作

    来自:帮助中心

    查看更多 →

  • 功能咨询

    功能咨询 什么是自动学习? ModelArts自动学习与ModelArts PRO的区别 什么是图像分类和物体检测? 自动学习和订阅算法有什么区别? 父主题: Standard自动学习

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    ,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明 参数名称 说明 名称 自定义策略名称,由中文、英文、数字、下划线、

    来自:帮助中心

    查看更多 →

  • ModelArts SDK、OBS SDK和MoXing的区别?

    MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    提供“自动学习白盒化”能力,开放模型参数、自动生成模型,实现模板化开发,提高开发效率 采用自动深度学习技术,通过迁移学习(只通过少量数据生成高质量的模型),多维度下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 组合作业

    建完成后才可以正常使用排序策略。 各个策略的详细参数设置和输入输出请单击下方链接查看。 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM 核函数特征交互神经网络-PIN 在“创建组合作业”页面,配置完过滤规则参数之后,进入“排序策略

    来自:帮助中心

    查看更多 →

  • 跨云容灾的支持矩阵和使用限制

    支持的架构和操作系统 跨云容灾支持的架构和操作系统如下列所示。 基础平台 支持的基础平台如表1所示。 表1 跨云容灾支持的基础平台 基础平台 版本 物理机 支持x86架构的物理机。 说明: 仅在使用英方容灾软件时支持物理机。 VMware vSphere 推荐6.0版本。 操作系统

    来自:帮助中心

    查看更多 →

  • 云上容灾的支持矩阵和使用限制

    云上容灾支持信息下列所示。操作系统云上容灾对 弹性云服务器 所使用的操作系统如表1所示。云上容灾支持的弹性 云服务器 操作系统操作系统版本Windows Server2008R2、2012R2、2016Redhat Enterprise Linux推荐:6.8、7.2、7.3支持:6.X系列、7.X系列CentOS推荐6.8、7.2、7.3支持:

    来自:帮助中心

    查看更多 →

  • 获取当前项目默认角色权限矩阵信息

    获取当前项目默认角色权限矩阵信息 功能介绍 获取当前项目默认角色权限矩阵信息 调用方法 请参见如何调用API。 URI GET /v1/job/project/default-permission 表1 Query参数 参数 是否必选 参数类型 描述 project_id 是 String

    来自:帮助中心

    查看更多 →

  • Storm样例程序开发思路

    单词统计逻辑每收到一个单词就进行加一操作,并将实时结果打印输出,如: apple:1 orange:1 apple:2 功能分解 根据上述场景进行功能分解,如表1所示: 表1 在应用中开发的功能 序号 步骤 代码示例 1 创建一个Spout用来生成随机文本 请参见创建Storm Spout

    来自:帮助中心

    查看更多 →

  • Storm样例程序开发思路

    单词统计逻辑每收到一个单词就进行加一操作,并将实时结果打印输出,如: apple:1 orange:1 apple:2 功能分解 根据上述场景进行功能分解,如表1所示。 表1 在应用中开发的功能 序号 步骤 代码示例 1 创建一个Spout用来生成随机文本 请参见创建Storm Spout

    来自:帮助中心

    查看更多 →

  • Storm样例程序开发思路

    单词统计逻辑每收到一个单词就进行加一操作,并将实时结果打印输出,如: apple:1 orange:1 apple:2 功能分解 根据上述场景进行功能分解,如表1所示: 表1 在应用中开发的功能 序号 步骤 代码示例 1 创建一个Spout用来生成随机文本 请参见创建Strom Spout

    来自:帮助中心

    查看更多 →

  • Volcano调度概述

    Volcano调度概述 Volcano是一个基于Kubernetes的批处理平台,提供了机器学习深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性,提供了高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等通用计算能力。 Volcano

    来自:帮助中心

    查看更多 →

  • 如何解决开发团队中的任务没人领取的问题

    每个成员在一个专业领域具有深度,而在其他领域具有广度)所组成的。首先需要Scrum Master能够和团队整理和维护成员技术矩阵,把个人技能掌握情况对团队公开(知道团队欠缺什么、知道可以和谁学等),然后定期组织技术分享等活动以帮助团队成员学习(主要以学习一项新的技术后的分享方式)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了