AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    矩阵分解 深度学习 区别 更多内容
  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • SA与HSS服务的区别?

    。 服务功能区别 SA通过采集全网安全数据(包括HSS、WAF、AntiDDoS等安全服务检测数据),使用大数据AI、机器学习等分析技术,从资产安全、威胁告警、漏洞管理、基线检查维度,分类呈现资产安全状况。 HSS通过在主机中安装Agent,使用AI、机器学习深度算法等技术分析

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    如何修改机器人规格,不同版本机器人区别 不同版本机器人区别 基础版 适用于个人,小型企业简单FAQ对话场景,包括以下功能模块: 运营数据统计 知识库管理 问答日志管理 未解决问题聚类 机器人形象管理 同义词典管理 高级版 适合企业高并发,场景多,需要更高准确率的场景,包括以下功能模块:

    来自:帮助中心

    查看更多 →

  • 召回策略

    调度的时间间隔。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 查询应用实例级/项目级权限矩阵

    查询应用实例级/项目级权限矩阵 功能介绍 查询应用实例级/项目级权限矩阵,传递app_id时,查询应用实例级权限矩阵;未传app_id,传递project_id时,查询应用项目级权限矩阵。 调用方法 请参见如何调用API。 URI GET /v3/applications/permissions

    来自:帮助中心

    查看更多 →

  • 学习任务功能

    我的自学课程操作 登录用户平台。 单击顶部菜单栏的学习任务菜单。 进入学习任务页面,单击【自学课程】菜单 进入我的自学课程页面,卡片形式展示我学习和我收藏的课程信息。 图5 我的自学课程 单击【课程卡片】,弹出课程的详情页面,可以查看课程的详细信息开始课程的学习。 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • SecMaster与HSS服务的区别?

    HSS通过在主机中安装Agent,使用AI、机器学习深度算法等技术分析主机中风险,并从HSS云端防护中心下发检测和防护任务,全方位保障主机安全。同时可从可视化控制台,管理主机Agent上报的安全信息。 表1 SecMaster与HSS主要功能区别 功能项 共同点 不同点 资产安全 主机资产

    来自:帮助中心

    查看更多 →

  • 获取构建任务的角色权限矩阵信息

    获取构建任务的角色权限矩阵信息 功能介绍 获取构建任务的角色权限矩阵信息 调用方法 请参见如何调用API。 URI GET /v1/job/permission/role 表1 Query参数 参数 是否必选 参数类型 描述 job_id 是 String 构建的任务ID; 编辑

    来自:帮助中心

    查看更多 →

  • Manager样例程序开发思路

    登录 FusionInsight Manager系统。 访问FusionInsight Manager系统,进行查询、添加、删除等操作。 流程分解 根据上述的业务场景进行功能分解,需要开发的功能点如表1所示。 表1 在Manager中开发的功能 序号 步骤 代码实现 1 添加用户 请参见添加Manager用户。

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    以调整学习率。取值范围:(0,1)。 权重衰减系数 用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    json” 。 低秩适应(LoRA)是一种重参数化方法,旨在减少具有低秩表示的可训练参数的数量。权重矩阵分解为经过训练和更新的低秩矩阵。所有预训练的模型参数保持冻结。训练后,低秩矩阵被添加回原始权重。这使得存储和训练LoRA模型更加高效,因为参数明显减少。 超参数设置,基于训练作

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 方案概述

    成快速户型图生成 户型图部件自动识别:利用深度学习技术,自动识别2D户型图的墙体、门窗、比例尺。 户型图精校:利用比例尺生成3D真实世界坐标点,呈现精准户型 图2 户型图 硬装、柜体智能布置 自动化精装设计:基于AI和大数据,通过深度学习16.3亿图纸方案,实现精装方案自动设计.

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了