编译构建 CodeArts Build 资源

编译构建 CodeArts Build 资源

编译构建(CodeArts Build)基于云端大规模分布式加速,为客户提供高速、低成本、配置简单的混合语言构建能力,帮助客户缩短构建时间,提升构建效率

编译构建(CodeArts Build)基于云端大规模分布式加速,为客户提供高速、低成本、配置简单的混合语言构建能力,帮助客户缩短构建时间,提升构建效率

    构建深度学习模型步骤 更多内容
  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 产品优势

    即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、 CSS 、MongoDB、Redis。

    来自:帮助中心

    查看更多 →

  • 执行作业

    ,包括作业输入条件、输出结果、执行环境、合作方信息和模型贡献度等。 图2 展示作业报告 执行纵向作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 图3 执行作业

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍

    来自:帮助中心

    查看更多 →

  • 附录:指令微调训练常见问题

    将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训练加速框架的选择,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspee

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 游戏/社交语音 监测游戏APP / 社交APP中的聊天内容以及语音动态,降低业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,基于复杂环境语音审核准确率高。

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • 计费说明

    ,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 准备声音分类数据

    使用ModelArts自动学习构建模型时,您需要将数据上传至 对象存储服务 (OBS)中。OBS桶需要与ModelArts在同一区域。 声音分类的数据要求 音频只支持16bit的WAV格式。支持WAV的所有子格式。 单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 使用预置镜像制作自定义镜像用于训练模型

    使用预置镜像制作 自定义镜像 用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 排序策略

    单击选择训练结果在OBS中的保存根路径,训练完成后,会将模型和日志文件保存在该路径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    模型训练使用流程 AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。

    来自:帮助中心

    查看更多 →

  • 通过中心网络构建跨区域VPC互通组网步骤

    通过中心网络构建跨区域VPC互通组网步骤 创建云服务资源 在企业路由器中配置VPC连接 在中心网络内为跨区域连接配置带宽 验证跨区域网络的通信情况 父主题: 通过企业路由器和云连接中心网络实现跨区域VPC互通

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了