图引擎服务 GES

图引擎服务 GES

图引擎服务(Graph Engine Service),是国内首个商用的、拥有自主知识产权的国产分布式原生图引擎,是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交应用、企业关系分析、风控、推荐、反欺诈等具有丰富关系数据的场景。

图引擎服务(Graph Engine Service),是国内首个商用的、拥有自主知识产权的国产分布式原生图引擎,是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交应用、企业关系分析、风控、推荐、反欺诈等具有丰富关系数据的场景。

    概率图模型 深度学习 更多内容
  • 配置模型地图

    配置模型 配置标注 配置检索 创建模型主题 父主题: 应用业务模型使用指导

    来自:帮助中心

    查看更多 →

  • 模型地图(旧版)

    模型(旧版) 模型概述 检索模型 配置检索 配置标注 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 模型地图概述

    新旧版本数据不兼容,在新版模型地中不能对旧版模型数据进行检索。如果需要检索旧版模型数据,具体请参见模型(旧版)。 新版模型同样支持配置检索和配置标注,具体请参见配置检索、配置标注。 父主题: 模型(新版)

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    对数据进行分析,一般通过使用适当的统计、机器学习深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程 AI开发的基本流程通常可以归纳为几个步骤:确定目的、准备数据、训练模型、评估模型、部署模型1 AI开发流程 确定目的

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    在诊断结果的“诊断报告”页签查看诊断详情。 2 诊断报告 在“诊断详情”区域,单击异常项左侧的“”查看异常详情,并根据“优化建议”进行处理。 3 诊断异常项(示例) 深度诊断结论 诊断项ID 诊断项名称 诊断结论 guestos.cpu.high_total_usage 总CPU占用率过高 实例整体CPU占用率已超过80%。

    来自:帮助中心

    查看更多 →

  • 应用场景

    在线商城 智能审核商家/用户上传像,高效识别并预警不合规片,防止涉黄、涉暴类像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张像识别速度小于0.1秒。 网站论坛 不合规片的识别和处理是用户原创内容(

    来自:帮助中心

    查看更多 →

  • 数据量和质量均满足要求,为什么微调后的效果不好

    训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 父主题: 典型训练问题和优化策略

    来自:帮助中心

    查看更多 →

  • 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同

    确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际情况调整“学习率”的值,帮助模型更好收敛。 数据质量:请检查训练数据的质量

    来自:帮助中心

    查看更多 →

  • 概要

    Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 产品优势

    海量训练数据 盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    过滤字段2……”的格式保存成csv文本文件。 选择完成后单击“下一步”。 3 数据选择 4 样本粗筛 (可选步骤) 样本对齐,支持使用新对齐的结果,如5所示;也支持复用隐私求交作业中通过这两个数据集计算得到的结果,如6所示。 5 使用新对齐结果 6 复用隐私求交作业中的结果 (可选步骤)进行特

    来自:帮助中心

    查看更多 →

  • 执行作业

    结果、执行环境、合作方信息和模型贡献度等。 2 展示作业报告 执行纵向作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待执行的纵向作业,单击“执行”。 3 执行作业 在弹出的界面配

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的标中的“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • 运行模型(活动图)

    运行模型(活动) “运行模型-活动”同UML的活动一样,元素介绍参见活动。 父主题: 运行视

    来自:帮助中心

    查看更多 →

  • 迁移学习

    from dataframe”标注下的对应值。 本文以使用“CMF”方法为例。 单击界面右上角的标,选择“迁移学习 > 特征迁移 > 迁移操作 > CMF”。 界面新增如1所示内容。 1 使用CMF算法迁移数据 参数含义如表5所示。 表5 使用CMF算法迁移数据参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 学习项目

    操作路径:培训-学习-学习项目-更多-循环任务设置 12 循环任务设置1 13 循环任务设置2 报名设置 管理员可通过让学员报名的方式进行学习资源的控制 操作路径:培训-学习-学习项目-更多-报名设置 14 报名设置1 15 报名设置2 复制 学习项目支持复制,便于管理员快速创建/编辑

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 计费说明

    ,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 运行模型(顺序图)

    运行模型(顺序) 运行模型-顺序中的元素都来自于上下文模型中的用户角色、外部系统或者逻辑模型中定义的逻辑元素,不需要在顺序中创建新元素,只需要使用到UML顺序中的消息连线。元素介绍如下表所示: 表1 运行模型(顺序)元素介绍 元素名 标 含义 Message 同步消息连线

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架的选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 使用模型

    使用模型 用训练好的模型预测测试集中的某个片属于什么类别,先显示这个片,命令如下。 1 2 3 # display a test image plt.figure() plt.imshow(test_images[9]) 1 显示用以测试的片 查看预测结果,命令如下。 1

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了