成都做深度学习并行化 更多内容
  • 基本概念

    特征操作主要是对数据集进行特征处理。 在旧版体验式开发模式下,模型训练服务支持的特征操作有重命名、归一、数值、标准、特征离散、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角的图标中的“数据处理”菜单下面的数据处理算子。

    来自:帮助中心

    查看更多 →

  • 设置并行度

    个节点。增加任务的并行度,充分利用集群机器的计算能力,一般并行度设置为集群CPU总和的2-3倍。 操作步骤 并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。 在会产生shuffle的操作函数内设置并行度参数,优先级最高。

    来自:帮助中心

    查看更多 →

  • 验证并行查询效果

    验证并行查询效果 本章节使用TPCH测试工具测试并行查询对22条QUERY的性能提升情况。 测试的实例信息如下: 实例规格:32 vCPUs | 256 GB 内核版本:2.0.26.1 并行线程数:16 测试数据量:100GB 操作步骤 生成测试数据。 请在https://github

    来自:帮助中心

    查看更多 →

  • 如何并行创建索引?

    如何并行创建索引? 答:参考如下方法: --设置maintenance_work_mem参数根据实际情况调整该大小。 gaussdb=# SET maintenance_work_mem = '8GB'; --建表。 gaussdb=# CREATE TABLE table_name

    来自:帮助中心

    查看更多 →

  • 关于OBS并行导入

    数据源文件:存储有数据的TEXT、 CS V、ORC、CARBONDATA、JSON文件。文件中保存的是待并行导入数据库的数据。 OBS: 对象存储服务 ,是一种可存储文档、图片、影音视频等非结构数据的云存储服务。向 GaussDB (DWS)并行导入数据时,数据对象放置在OBS 服务器 上。 桶(Bucket):对OBS

    来自:帮助中心

    查看更多 →

  • 关于GDS并行导入

    (导入)。 概述 并行导入将存储在服务器普通文件系统中的数据导入到GaussDB(DWS)数据库中。暂时不支持将存储在HDFS文件系统上的数据导入GaussDB(DWS)。 并行导入功能通过外表设置的导入策略、导入数据格式等信息来识别数据源文件,利用多DN并行的方式,将数据从数据

    来自:帮助中心

    查看更多 →

  • 关于OBS并行导出

    OBS:对象存储服务,是一种可存储文档、图片、影音视频等非结构数据的云存储服务。从GaussDB(DWS)并行导出数据时,数据对象放置在OBS服务器上。 桶(Bucket):对OBS中的一个存储空间的形象称呼,是存储对象的容器。 对象存储是一种非常扁平的存储方式,桶中存储的对象都在同一个逻辑层级

    来自:帮助中心

    查看更多 →

  • 关于GDS并行导出

    关于GDS并行导出 使用GDS工具将数据从数据库导出到普通文件系统中,适用于高并发、大量数据导出的场景。 当前版本的GDS支持从数据库导出到管道文件,该功能使GDS的导出更加灵活多变。 当GDS用户的本地磁盘空间不足时: 通过管道文件将从GDS导出的数据进行压缩减少磁盘空间。 通

    来自:帮助中心

    查看更多 →

  • 华为人工智能工程师培训

    0中的Keras高层接口及TensorFlow2.0实战 深度学习预备知识 介绍学习算法,机器学习的分类、整体流程、常见算法,超参数和验证集,参数估计、最大似然估计和贝叶斯估计 深度学习概览 介绍神经网络的定义与发展,深度学习的训练法则,神经网络的类型以及深度学习的应用 图像识别、 语音识别 机器翻译 编程实验

    来自:帮助中心

    查看更多 →

  • 如何并行创建索引?

    如何并行创建索引? 答:参考如下方法: --设置maintenance_work_mem参数根据实际情况调整该大小。 gaussdb=# SET maintenance_work_mem = '8GB'; --建表。 gaussdb=# CREATE TABLE table_name

    来自:帮助中心

    查看更多 →

  • SMP并行执行

    起性能的劣。同时,生成SMP需要考虑更多的候选计划,将会导致生成时间较长,相比串行场景也会引起性能的劣。 GaussDB(DWS)的SMP特性由GUC参数query_dop控制,该参数可设置用户自定义的查询并行度。 SMP适用场景与限制 SMP适用场景: 支持并行的算子 计划中存在以下算子支持并行:

    来自:帮助中心

    查看更多 →

  • SMP并行执行

    起性能的劣。同时,生成SMP需要考虑更多的候选计划,将会导致生成时间较长,相比串行场景也会引起性能的劣。 GaussDB(DWS)的SMP特性由GUC参数query_dop控制,该参数可设置用户自定义的查询并行度。 SMP适用场景与限制 SMP适用场景: 支持并行的算子 计划中存在以下算子支持并行:

    来自:帮助中心

    查看更多 →

  • 产品优势

    盘古大模型依托海量且多样的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型

    来自:帮助中心

    查看更多 →

  • 应用场景

    反馈,同时结合用户的长期兴趣和短期兴趣进行个性推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性媒资推荐。 场景优势 可以实现7*24小时,智能学习用户行为,构建兴趣模型。 兴趣文章命中率高,用户粘性增强,PV增幅明显。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    样本增强(随机翻转、裁切、对比度亮度增强、归一等)、loss函数、优化器等参数,并支持用户自定义更多超参数,提升无代码模型开发效率。 图13 网络结构及模型参数配置 图14 网络结构及模型参数配置2 模型训练 模型训练多维度可视监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目,是一种针对结构数据的模型自动训练应用,能够对结构数据进行分类或者数据预测。可用于用户画像分析,实现精准营销。也可应用于制造设备预测性维护,根据设备实时数据的分析,进行故障识别。

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 什么是OptVerse

    Programming Interface,应用程序编程接口)的方式提供给用户,用户通过实时访问和调用API获取推理结果,帮助用户自动采集关键数据,打造智能业务系统,提升业务效率。

    来自:帮助中心

    查看更多 →

  • 产品优势

    实现多个参与方数据流的自动编排和融合计算。 自主高效 数据使用全流程可视展示,为数据参与方提供可感知、可监测的数据使用过程; 支持数据参与方、计算方的多种部署模式,包括云上(同Region、跨Region)、边缘节点、HCSO的部署模式; 采用容器资源/部署管理,支持调度方、数据参与方、计算方的弹性扩缩容。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    加数据,训练效果并不明显。 降低正则约束。 正则约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则参数λ或者直接去除正则项。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 设计原则

    设计原则 以下是常用的性能优化指导原则: 中心原则:识别支配性工作量负载功能,并使其处理过程最小,把注意力集中在对性能影响最大的部分进行提升。 本地原则:选择靠近的活动、功能和结果的资源;避免通过间接的方式去达到目的,导致通信量或者处理量大辐增加,性能大辐下降。 共享资源:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了