AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    cuda 深度学习 更多内容
  • p2服务器安装NVIDIA GPU驱动和CUDA工具包

    aspx/124722/en-us CUDA工具包安装包“cuda_9.0.176_384.81_linux.run” https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda_9.0.176_384.81_linux-run

    来自:帮助中心

    查看更多 →

  • 查询并导出课程学习记录

    查询并导出课程学习记录 前提条件 用户具有“查询课程记录”权限 操作步骤: 登录ISDP系统,选择“作业人员->学习管理->学习记录”,查询课程学习记录 点击顶部“课程学习记录”可以在这里对学习记录进行查询以及导出,筛选说明如下表: 图1 课程记录查询条件 表1 “课程学习记录”筛选项

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API

    来自:帮助中心

    查看更多 →

  • 创建可信联邦学习作业

    创建可信联邦学习作业 联邦建模的过程由企业A来操作,在“作业管理 > 可信联邦学习”页面单击“创建”,填写作业名称并选择算法类型后单击确定即进入联邦建模作业界面。本文逻辑回归算法为例。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 训练过程中无法找到so文件

    directory 原因分析 编译生成so文件的cuda版本与训练作业的cuda版本不一致。 处理方法 编译环境的cuda版本与训练环境不一致,训练作业运行就会报错。例如:使用cuda版本为10的开发环境tf-1.13中编译生成的so包,在cuda版本为9.0训练环境中tf-1.12训练会报该错。

    来自:帮助中心

    查看更多 →

  • 如何查询自定义镜像的cuda和cudnn版本?

    如何查询 自定义镜像 cuda和cudnn版本? 查询cuda版本: cat /usr/local/cuda/version.txt 查询cudnn版本: cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 父主题:

    来自:帮助中心

    查看更多 →

  • 日志提示“cuda runtime error (10) : invalid device ordinal at xxx”

    原因分析 可以从以下角度排查: 请检查CUDA_VISIBLE_DEVICES设置的值是否与作业规格匹配。例如您选择4卡规格的作业,实际可用的卡ID为0、1、2、3,但是您在进行cuda相关的运算时,例如"tensor.to(device="cuda:7")",将张量搬到了7号GPU卡上,超过了实际可用的ID号。

    来自:帮助中心

    查看更多 →

  • 查询模型runtime

    "gpu", "cuda_version" : "cuda 10.2" }, { "type" : "none" }, { "type" : "gpu", "cuda_version" : "cuda 10.2" }

    来自:帮助中心

    查看更多 →

  • P1型云服务器如何安装NVIDIA驱动?

    xx.yy.run 安装CUDA Toolkit。 如无特殊要求,推荐您安装前提条件中提供的CUDA Toolkit版本“cuda_8.0.61_375.26_linux.run”,该版本已经过充分验证。 将下载的CUDA Toolkit安装包“cuda_a.b.cc_xxx.yy_linux

    来自:帮助中心

    查看更多 →

  • GPU A系列裸金属服务器无法获取显卡如何解决

    的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__.py:107: UserWarning: CUDA initialization: Unexpected

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • Tesla驱动及CUDA工具包获取方式

    Series T4 G5 Tesla V-Series V100 CUDA工具包下载地址 请从CUDA软件包下载获取CUDA软件包,您需要根据实例类型和驱动版本,选择对应的CUDA Toolkit软件包产品。 驱动版本与CUDA Toolkit版本存在对应关系,如二者版本不匹配,可能导致驱动无法使用。

    来自:帮助中心

    查看更多 →

  • GPU服务器上配置Lite Server资源软件环境

    0.182.03.run 至此NVIDIA-DRIVER驱动安装完成。 安装CUDA驱动 上文安装NVIDIA驱动是根据CUDA12.0选择的安装包, 因此下文默认安装CUDA 12.0。 进入CUDA Toolkit页面。 选择Operating System、Architec

    来自:帮助中心

    查看更多 →

  • 计费说明

    务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。简单场景工作量预计不超过17人天 300,000.00 每套 AI算法原型开发-标准版 对业务场景为普通场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习或机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    ague_id}/fl-jobs/{job_id} 保存横向联邦学习作业 响应示例 无 状态码 状态码 描述 200 保存横向联邦学习作业成功 401 操作无权限 500 内部 服务器 错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 概述

    概述 天筹求解器服务(OptVerse)是一种基于华为云基础架构和平台的智能决策服务,以自研AI求解器为核心引擎,结合机器学习深度学习技术,为企业提供生产计划与排程、切割优化、路径优化、库存优化等一系列有竞争力的行业解决方案。 父主题: 产品介绍

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    恢复归档或深度归档存储对象 功能介绍 如果要获取归档存储或深度归档对象的内容,需要先将对象恢复,然后再执行下载数据的操作。对象恢复后,会产生一个标准存储类型的对象副本,也就是说会同时存在标准存储类型的对象副本和归档或深度归档存储类型的对象,在恢复对象的保存时间到期后标准存储类型的对象副本会自动删除。

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    用户授权。 注意事项 归档存储或深度归档存储的对象正在恢复的过程中,不支持修改恢复方式,不允许暂停或删除恢复任务。 数据恢复后,会产生一个标准存储类别的对象副本,即对象同时存在标准存储类别的对象副本和归档存储或深度归档存储类别的对象。归档存储或深度归档存储对象恢复完成时,对象的恢

    来自:帮助中心

    查看更多 →

  • 路网数字化服务-成长地图

    CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录 应用容器化改造介绍

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    镜像一:pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 镜像二:pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 镜像三:pytorch1.4-cuda10.1-cudnn7-ubuntu18.04 镜像一:pytorch1.8-cuda10.2-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了