GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    2g GPU内存深度学习 更多内容
  • 训练任务

    八爪鱼自动驾驶平台的多机分布式训练功能可以帮助用户加快模型训练速度,提高训练效率,并支持更大规模的深度学习任务。通过多机分布式训练,用户可以将训练任务分配到多台计算机或 服务器 上并行进行,充分利用硬件资源,加快模型收敛速度,提高训练效果。平台支持多种深度学习框架,如TensorFlow、PyTorch等,并提供简单易用

    来自:帮助中心

    查看更多 →

  • 大数据分析

    人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。

    来自:帮助中心

    查看更多 →

  • 调度概述

    使用Kubernetes默认GPU调度 GPU虚拟化 GPU虚拟化能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。 GPU虚拟化 NPU调度

    来自:帮助中心

    查看更多 →

  • ALM-18008 ResourceManager堆内存使用率超过阈值

    ResourceManager堆内存使用率超过阈值 告警解释 系统每30秒周期性检测Yarn ResourceManager堆内存使用率,并把实际的Yarn ResourceManager堆内存使用率和阈值相比较。当Yarn ResourceManager堆内存使用率超出阈值(默认为最大堆内存的95%)时产生该告警。

    来自:帮助中心

    查看更多 →

  • 查询支持的服务部署规格

    memory_info MemoryInfo object 规格内存信息。 gpu_info GpuInfo object 规格GPU信息。 npu_info NpuInfo object 规格的NPU信息。 source_type String 此规格应用于模型的类型,取值为空或auto,默认

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的服务器后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • GPT-2基于Server适配PyTorch GPU的训练推理指导

    Megatron-DeepSpeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 M

    来自:帮助中心

    查看更多 →

  • 开启内存加速

    开启内存加速 在已有的MySQ L实例 开启内存加速时,需要先创建GeminiDB实例。 注意事项 内存加速开启后,不允许在MySQL实例执行RESET MASTER、FLUSH LOG S等删除binlog的命令。 操作步骤 登录管理控制台。 单击管理控制台左上角的,选择区域和项目。

    来自:帮助中心

    查看更多 →

  • 内存加速概述

    内存加速概述 内存加速是GeminiDB Redis为了优化“传统被动缓存方案”而推出的功能,它可以让用户通过界面配置规则的形式,自动缓存MySQL的数据,加速MySQL的访问。 如下图图1所示,“传统被动缓存方案”需要用户自行开发代码把MySQL中的数据写入到缓存中,存在效率低

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作 自定义镜像 用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 内存检查

    检查系统内存大小,以及剩余内存量,并判断是否满足IEF需求。edgectl check memorymemory可以简写为mem,即:edgectl check mem无检查内存:示例执行结果:

    来自:帮助中心

    查看更多 →

  • Netty内存

    Netty内存 介绍APM采集的Netty内存指标的类别、名称、含义等信息。 表1 Netty内存指标说明 指标类别 指标 指标名称 指标说明 单位 数据类型 默认聚合方式 内存(memory,内存指标。) directMemoryUsage 已使用直接内存 已使用直接内存 - INT

    来自:帮助中心

    查看更多 →

  • 内存版

    内存内存版业务面API包括点操作、边操作、元数据操作、索引操作、Gremlin操作、算法、路径、图统计、图操作、子图操作、Job管理、Cypher操作API。 表1 点操作API 名称 版本 URL 功能描述 点过滤查询 1.0.0 POST/ges/v1.0/{projec

    来自:帮助中心

    查看更多 →

  • 内存加速

    内存加速 开启内存加速,MySQL数据更新后,会把数据全部缓存到GeminiDB Redis吗? 开启内存加速,GeminiDB Redis数据会不断增长,需要扩容吗?如何进行缓存数据管理? 客户已有业务实现“db”+“缓存”,推荐使用内存加速吗?哪种场景可以让客户使用内存加速方案?

    来自:帮助中心

    查看更多 →

  • 配置内存

    配置内存 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-defaults

    来自:帮助中心

    查看更多 →

  • 方案概述

    业知识与场景需求的深度融合,为客户提供 NLP、CV、多模态等领域的模型应用解决方案,帮助企业解决特定的业务问题。 方案架构 天宽昇腾云行业大模型适配服务通过深度学习算法优化与高效计算,结合华为昇腾算力,为各行业提供全面的大模型迁移、适配与优化服务。天宽通过深度优化昇腾算力,结合

    来自:帮助中心

    查看更多 →

  • volcano

    2 cce-gpu-topology-predicate GPU拓扑调度预选算法 - - cce-gpu-topology-priority GPU拓扑调度优选算法 - - cce-gpu 结合U CS GPU插件支持GPU资源分配,支持小数GPU配置 说明: 小数GPU配置的前提条

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 静态内存

    华为云帮助中心,为用户提供产品简介、价格说明、购买指南、用户指南、API参考、最佳实践、常见问题、视频帮助等技术文档,帮助您快速上手使用华为云服务。

    来自:帮助中心

    查看更多 →

  • 内存版

    内存版 点操作API 边操作API 元数据操作API 索引操作API Gremlin操作API 算法API 动态图分析API 路径API 图统计API 图操作API 子图操作API Job管理API 自定义操作API Cypher操作API(2.2.16) Filtered-query

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了