GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    服务器配置p100 gpu 更多内容
  • Tesla驱动及CUDA工具包获取方式

    sla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐)自动安装GPU加速型E CS GPU驱动(Linux)和(推荐)自动安装GPU加速型ECS的GPU驱动(Windows)。 GPU虚拟化型实例,需要严格按照表1选择合适的驱动版本下载使用。

    来自:帮助中心

    查看更多 →

  • 购买套餐包

    计费功能包括:数据源。 在线服务:用于推荐系统在线推理,获得最终推荐结果。 套餐介绍 计算资源分为“计算型CPU(1U4G)实例”、“计算型GPU(P100)实例”、“计算型GPU(V100)实例”3种类型。存储资源支持“画像存储(一百万)”。在线服务支持“在线并发9000TPS

    来自:帮助中心

    查看更多 →

  • 查询可用资源规格

    COMMON_DATASET(数据集) gpu_type String GPU类型(资源规格不包含GPU,此字段不会返回); 枚举值: Tnt004 Vnt1 Mnt06 Pnt1 Pnt004 gpu Integer GPU数量,整数(资源规格不包含GPU,此字段不会返回); cpu Double

    来自:帮助中心

    查看更多 →

  • GPU加速型

    License。配置GRID License步骤请参考GPU加速型实例安装GRID驱动。 使用私有镜像创建的G6v型 弹性云服务器 ,请确认在制作私有镜像时安装GRID驱动。如果未安装,请在创建完成后安装GRID驱动,以实现图形加速功能。 详细安装操作请参考GPU加速型实例安装GRID驱动。

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    率,方法二是通过安装gpu-Z工具查看GPU使用率。 前提条件 GPU加速 云服务器 安装NVIDIA驱动。 方法一 登录GPU加速 服务器 。 打开cmd命令窗口。 执行如下命令,查看GPU使用情况。 cd C:\Program Files\NVIDIA Corporation\NVSMI

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • GPU服务器上配置Lite Server资源软件环境

    安装步骤,您可针对需要安装的软件查看对应的内容: 安装NVIDIA驱动 安装CUDA驱动 安装Docker 安装nvidia-fabricmanager 以下提供常见的配置场景,您可查看相关文档方便您快速配置: GP Vnt1裸金属服务器EulerOS 2.9安装NVIDIA 515+CUDA

    来自:帮助中心

    查看更多 →

  • 相关参数取值列表

    V100_vGPU 表示镜像内部安装了V100显卡的硬件虚拟化驱动,支持的云服务器规格为g5.8xlarge.4等。 P2V_V100 表示镜像内部安装了V100显卡的硬件虚拟化驱动,支持的云服务器规格为p2v.2xlarge.8等。 P100 表示镜像内部安装P100显卡的硬件虚拟化驱动,支持的云服务器规格为p1

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    SSD 2 x 2*10GE GPU加速GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU

    来自:帮助中心

    查看更多 →

  • 查询边缘规格列表

    String 此参数是Region级配置,某个AZ没有在cond:operation:az参数中配置时默认使用此参数的取值。不配置或无此参数时等同于“normal”。 cond:network String 网络约束 支持网络特性,不配置时以控制台默认配置为准。 ecs:generation

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU调度概述 准备GPU资源 创建GPU应用 监控GPU资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。 GPU虚拟化功能优势如下: 灵活:精细配置GPU算力占比及显存大

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • 服务器配置

    服务器配置 进行数据库的设置或连接 最高权限的设置 设定合作伙伴的系统库 服务器部署项目 重启Tomcat服务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    用户提供更加便捷、高效的GPU计算服务,有效承载AI模型推理、AI模型训练、音视频加速生产、图形图像加速加速工作负载。 GPU函数主要使用于:仿真、模拟、科学计算、音视频、AI和图像处理等场景下,使用GPU硬件加速,从而提高业务处理效率。 表1 GPU函数规格 卡型 vGPU 显存(GB)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了