GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    带gpu云服务器 更多内容
  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    gpu-device-plugin 插件简介 gpu-device-plugin插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 约束与限制 下载的驱动必须是后缀为“.run”的文件。 仅支持Nvidia Tesla驱动,不支持GRID驱动。

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • 查询规格详情和规格扩展信息列表

    pci_passthrough:gpu_specs String G1型和G2型 云服务器 应用的技术,包括GPU虚拟化和GPU直通。 如果该规格的 服务器 使用GPU虚拟化技术,且GPU卡的型号为M60-1Q,参数值为“m60_1q:virt:1”。 如果该规格的云服务器使用GPU直通技术,且GPU卡的型号

    来自:帮助中心

    查看更多 →

  • 如何为CVR新建委托?

    为保证VR云渲游平台的正常使用,创建GPU云服务器时需要建立委托关系,将CES Administrator和OBS OperateAccess的权限委托给E CS 。委托成功后,用户可以通过VR云渲游平台动态监控GPU云服务器的运行状态,并通过GPU云服务器下载OBS桶内的应用。 执行如下操作前,请确认您已进入“VR云渲游平台

    来自:帮助中心

    查看更多 →

  • 步骤三:集群与应用创建

    单击“下一步:添加云服务器”。 根据界面提示填写待添加GPU加速云服务器参数,该云服务器用于部署应用,提供计算、图形实时渲染等功能。 表3 添加VR云服务器参数说明 参数 说明 取值样例 部署云服务器 选择用于部署应用的云服务器。 新建:购买新的GPU加速云服务器。 纳管:将在E

    来自:帮助中心

    查看更多 →

  • 裸金属服务器规格与驱动对应关系

    e 需要安装v5服务器驱动 需要 - - - HBA的规格需要 需要 Ubuntu 需要安装v5服务器驱动 需要 - - - HBA的规格需要 需要 SLES 需要安装v5服务器驱动 需要 - - - HBA的规格需要 需要 Debian 需要安装v5服务器驱动 需要 - -

    来自:帮助中心

    查看更多 →

  • P1型云服务器如何安装NVIDIA驱动?

    multi-user.target 执行以下命令,重启弹性云服务器。 reboot (可选)安装GPU驱动。 您可以使用CUDA Toolkit安装包中自带的GPU驱动,或者单独下载配套的GPU驱动版本。如无特殊要求,推荐您安装前提条件中提供的GPU驱动版本“NVIDIA-Linux-x86_64-375

    来自:帮助中心

    查看更多 →

  • 直播带货风格文案

    直播货风格文案 嗨,大家好!欢迎来到我们的直播间!我是今天的主播Lan。 非常高兴能够和各位在今晚的直播间相聚,希望今天在直播间里能和大家一起度过一段非常有意义的时光! 感谢每一位在直播间停留观看的朋友们,感谢大家进来咱们的直播间参与今天的互动、留言。 稍后我们的直播间不但会教

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 安装Windows特殊驱动

    对于一些类型的弹性云服务器,如果使用私有镜像进行创建,需要在制作私有镜像时安装特殊驱动。 GPU驱动 如果这个私有镜像用于创建GPU加速云服务器,需要在镜像中安装合适的GPU驱动来获得相应的GPU加速能力。GPU加速型实例中配备的NVIDIA Tesla GPU支持两种类型的驱动

    来自:帮助中心

    查看更多 →

  • GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办? 问题描述 GPU实例启动异常,检查系统日志,发现NVIDIA驱动空指针访问。如图1所示。 图1 NVIDIA驱动空指针访问 可能原因 GPU驱动异常。 处理方法 卸载驱动。 方法1:执行nvidia-uninstall命令,卸载驱动。

    来自:帮助中心

    查看更多 →

  • 弹性云服务器关机后还会计费吗?

    基于专属资源或边缘可用区创建的实例,基础资源(vCPU、内存)仍会保留。 镜像 不计费 资源保留,不计费,不进行处理。 GPU 不计费 不含本地盘的“GPU加速型”实例,关机后GPU资源不再保留。 云硬盘(系统盘和数据盘) 计费 不受关机影响,仍然按资源计费原则正常计费。 带宽 计费 不受关机影响,固定带宽仍然按资源计费原则正常计费。

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • 弹性云服务器支持的基础监控指标

    network_incoming_bytes_aggregate_rate 外网络流入速率 √(镜像如果安装了UVP VMTools,则不提供该指标,请使用内网络流出速率。) √ √(镜像如果安装了UVP VMTools,则不提供该指标,请使用内网络流出速率。) √ network_outgoin

    来自:帮助中心

    查看更多 →

  • 生成带授权信息的URL

    字段名 类型 说明 SignedUrl String 授权信息的URL。 ActualSignedRequestHeaders Object 通过授权信息的URL发起请求时实际应携带的头域。 代码样例 // 生成上传对象的授权信息的URL var putObjectResult

    来自:帮助中心

    查看更多 →

  • 弹性云服务器关机后还会计费吗?

    基于专属资源或边缘可用区创建的实例,基础资源(vCPU、内存)仍会保留。 镜像 不计费 资源保留,不计费,不进行处理。 GPU 不计费 不含本地盘的“GPU加速型”实例,关机后GPU资源不再保留。 云硬盘(系统盘和数据盘) 计费 不受关机影响,仍然按资源计费原则正常计费。 带宽 计费 不受关机影响,固定带宽仍然按资源计费原则正常计费。

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了