文字识别 OCR    

文字识别OCR提供在线文字识别服务,将图片或扫描件中的文字识别成可编辑的文本。OCR文字识别支持证件识别、票据识别、定制模板识别、通用表格文字识别等。

 
 

    文字识别训练 更多内容
  • Controlnet训练

    启动SD1.5训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd /home/ma-user/diffusers sh diffusers_controlnet_train.sh Step3 启动sdxl训练服务 使用ma-user用户执行如下命令运行训练脚本。 cd

    来自:帮助中心

    查看更多 →

  • 预训练

    统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    工作流介绍 工作流简介 功能介绍 支持构建 文字识别 模板,识别单个板式图片中的文字,提供高精度的文字识别模型,保证结构化信息提取精度。 适用场景 用户认证识别 识别证件中关键信息,节省人工录入,提升效率,降低用户实名认证成本,准确快速便捷。 快递单自动填写 识别图片中联系人信息并自动填写快递单,减少人工输入。

    来自:帮助中心

    查看更多 →

  • 模型训练

    多层嵌套异常检测学件 > 异常检测模型训练”,添加“异常检测模型训练”代码框。 图3 异常检测模型训练 单击“异常检测模型训练”代码框左侧的图标。等待模型训练完成。 可以通过屏幕打印信息,查看模型训练过程。屏幕会依次打印400个Epochs的模型训练评估结果。 父主题: 多层嵌套异常检测学件

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。

    来自:帮助中心

    查看更多 →

  • 训练模型

    .pb”,请勾选预训练模型。 确认信息后,单击“开始训练”。 图1 模型训练 模型训练一般需要运行一段时间,等模型训练完成后,“应用开发>模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“开发应用>模型训练”页面查看“训练详情”。 图2 训练详情 父主题: HiLens安全帽检测技能

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示查看训练详情。 图1 训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“参数配置”填写“最大训练轮次”。“最大训练轮次”指模型迭代次数,即训练中遍历数据集的次数,参数范围[30,100]。 确认信息后,单击“训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“

    来自:帮助中心

    查看更多 →

  • 训练模型

    在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情

    来自:帮助中心

    查看更多 →

  • 训练发布

    训练发布 数据标注(可选) 发布测试 父主题: 技能管理

    来自:帮助中心

    查看更多 →

  • 训练模型

    .pb”,请勾选预训练模型。 确认信息后,单击“开始训练”。 图1 模型训练 模型训练一般需要运行一段时间,等模型训练完成后,“应用开发>模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“应用开发>模型训练”页面查看“训练详情”。 图2 训练详情 父主题: HiLens安全帽检测技能

    来自:帮助中心

    查看更多 →

  • 训练管理

    训练管理 训练作业 资源和引擎规格接口

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 预训练

    。 Step4 开启训练故障自动重启功能 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoi

    来自:帮助中心

    查看更多 →

  • 预训练

    训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed

    来自:帮助中心

    查看更多 →

  • 预训练

    nizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd

    来自:帮助中心

    查看更多 →

  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0

    来自:帮助中心

    查看更多 →

  • LoRA训练

    LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae

    来自:帮助中心

    查看更多 →

  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0

    来自:帮助中心

    查看更多 →

  • LoRA训练

    LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae

    来自:帮助中心

    查看更多 →

  • LoRA训练

    LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了