句子相似度算法 更多内容
  • 标签传播算法(Label Propagation)

    标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 适用场景 标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。 参数说明 表1 标签传播算法(Label Propagation)参数说明

    来自:帮助中心

    查看更多 →

  • 应用场景

    自然语言处理 适用于智能问答系统、文本分析、内容推荐、翻译等场景。 智能问答系统 通过中文分词、短文本相似、命名实体识别等相关技术计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 文本分析 通过关键词提取、文本聚类、主题挖掘等算法模型,挖掘突发事件、公众话题导向,进行话题发现、趋势发现等。多维

    来自:帮助中心

    查看更多 →

  • 标签传播算法(label_propagation)

    建图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm

    来自:帮助中心

    查看更多 →

  • 移动句子到指定分类

    移动句子到指定分类 场景描述 移动句子到指定分类的接口。 接口方法 POST 接口URI https:// 域名 /apiaccess/C CS QM/rest/ccisqm/v1/sentencemanage/moveSentenceToCategory,例如域名是service.besclouds

    来自:帮助中心

    查看更多 →

  • 根据句子分类的唯一标识获取分类下句子列表

    根据句子分类的唯一标识获取分类下句子列表 场景描述 根据句子分类的唯一标识获取分类下句子列表接口。 接口方法 POST 接口URI https://域名/apiaccess/CCSQM/rest/ccisqm/v1/sentencemanage/querySentenceByCa

    来自:帮助中心

    查看更多 →

  • 自然语言处理基础版和领域版的区别

    区分基础版和领域版的接口 接口类型 接口 自然语言处理基础 服务接口 命名实体识别(基础版) 命名实体识别(领域版) 文本相似(基础版) 文本相似(领域版) 语言生成 服务接口 文本摘要(基础版) 文本摘要(领域版) 语言理解 服务接口 情感分析(基础版) 情感分析(领域版)

    来自:帮助中心

    查看更多 →

  • 关联预测算法(Link Prediction)

    输入参数source=Lee,target=Alice,计算两个节点之间的关联,JSON结果会展示在查询结果区。 父主题: 算法参考

    来自:帮助中心

    查看更多 →

  • 问答诊断

    及扩展问,并按相似得分降序展示搜索结果。 初筛是比较粗略的相似匹配算法,快速的召回一批比较有可能的问题,然后利用重排序算法去精确排序。初筛一般更关心词语是否出现,重排序对顺序、词组等的特征会综合考虑。 重排序结果 根据初筛结果,对用户问进行语义识别,并根据相似得分重新排序,按得分倒序展示结果。

    来自:帮助中心

    查看更多 →

  • 算法一览表

    图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 Louvain算法 基于模块的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区

    来自:帮助中心

    查看更多 →

  • 服务支持使用哪些算法对图进行分析?

    图,节点包括已标注和未标注数据,其边表示两个节点的相似,节点的标签按相似传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似越大,标签越容易传播。 Louvain算法 基于模块的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区

    来自:帮助中心

    查看更多 →

  • 查看NLP大模型训练状态与指标

    个较小的值。 困惑 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。 指标看板 bleu-1:模型生成句子与实际句子在单字层面的匹配,数值越高,表明模型性能越好。 bleu-2:模型生成句子与实际句子在词组层面的匹配,数值越高,表明模型性能越好。

    来自:帮助中心

    查看更多 →

  • 创建ModelArts数据清洗任务

    simlarity_threshold 否 0.9 相似阈值。两张图片相似程度超过阈值时,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。 embedding_distance 否 0.2 样本特征间距。两张图片样本特征间距小于设定值,判定为相似图片,反之按非相似图片处理。输入取值范围为0~1。

    来自:帮助中心

    查看更多 →

  • 算法

    ClusterCoefficientSample 聚类系数 BetweennessSample 中介中心算法 EdgeBetweennessSample 边中介中心 OdBetweennessSample OD中介中心 SingleVertexCirclesDetectionSample 单点环路检测

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • ModelArts Pro的应用场景和用户群体

    自然语言处理套件 通用文本分类场景。 智能问答 通过中文分词、短文本相似、命名实体识别等自然语言处理相关技术,计算两个问题对的相似,可解决问答、对话、语料挖掘、知识库构建等问题。 内容推荐 通过文本分类预测模型,精确匹配出语义相似的内容,快速构建内容推荐场景。 视觉套件 商品识别 无人超

    来自:帮助中心

    查看更多 →

  • 查询配体相似性图计算任务

    success Boolean 相似计算是否成功。 similarity Float 配体对之间的相似。 最小值:0 最大值:1 reason String 相似计算失败的理由。 最小长度:1 最大长度:512 请求示例 无 响应示例 状态码: 200 查询配体相似性图计算任务成功响应。

    来自:帮助中心

    查看更多 →

  • 配置知识融合

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 配置知识融合时,如何选择融合标识符和配置属性

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

  • 句子、敏感词训练接口 (SemanticKeywordTraining)

    句子、敏感词训练接口 (SemanticKeywordTraining) 取得正在训练的模组 训练模组 父主题: 智能质检

    来自:帮助中心

    查看更多 →

  • 什么是知识融合

    知识融合需要初步筛选与融合标识符相似的实体数据。 判断属性相似 初步筛选与融合标识符相似的数据后,需要配置相似属性和相似函数,并判断数据之间的属性相似。 融合知识 对属性相似均达到阈值条件的数据进行融合。 综上所述,在创建图谱的过程中,需要配置知识融合的融合标识符、待融合的实体、相似函数和相似

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了