超分辨率转换

超分辨率转换

    卷积神经网络图像压缩 更多内容
  • 华为企业人工智能高级开发者培训

    培训内容 培训内容 说明 神经网络基础 介绍深度学习预备知识,人工神经网络,深度前馈网络,反向传播和神经网络架构设计 图像处理理论和应用 介绍计算机视觉概览,数字图像处理基础,图像预处理技术,图像处理基本任务,特征提取和传统图像处理算法,深度学习和卷积神经网络相关知识 语音处理理论和应用

    来自:帮助中心

    查看更多 →

  • 使用Tensorflow训练神经网络

    实例中创建GPU类型的负载,以tensorflow的图像分类为示例,演示在容器中直接使用GPU训练一个简单的神经网络。 优势 使用容器化的方式做此类人工智能训练与推理有如下优势: 容器化消除环境差异,不需要自己安装各种软件和配套版本,如python,tensorflow,cuda

    来自:帮助中心

    查看更多 →

  • 字段压缩

    字段压缩 为了减少数据页面存储空间占用,节省成本,TaurusDB推出细粒度的字段压缩,提供ZLIB和ZSTD两种压缩算法,用户可以综合考虑压缩比和压缩解压性能影响,选择合适的压缩算法,对不频繁访问的大字段进行压缩。同时,字段压缩特性提供自动压缩的能力,帮助用户更方便地使用此特性。

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ILM GS_ILM_JOBDETAIL GS_ILM_OBJECT GS_ILM_PA RAM GS_ILM_POLICY GS_ILM_TASK GS_ILM_TASKDETAIL GS_ILM_TICKER 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 配置智能压缩

    配置智能压缩 开启智能压缩功能时,CDN会自动压缩您的静态文件。智能压缩能够有效缩小传输文件的大小,提升传输效率,减少带宽消耗。智能压缩包含Gzip压缩和Brotli压缩,Brotli压缩的性能比Gzip压缩提升约15%~25%。 注意事项 如果源站配置了MD5值校验,请勿开启此

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ADM_ILMDATAMOVEMENTPOLICIES GS_ADM_ILMOBJE CTS GS_ADM_ILMPOLICIES GS_ADM_ILMEVALUATIONDETAILS GS_ADM_ILMPARAMETERS GS_ADM_ILMRESULTS

    来自:帮助中心

    查看更多 →

  • HCIP-AI EI Developer

    0考试覆盖:人工智能进阶理论与华为云开发实践,内容包括但不限于:神经网络基础;图像处理、语音处理、 自然语言处理 理论和应用;ModelArts概览;图像处理、语音处理、自然语言处理实验;ModelArts平台开发实验等。 知识点 神经网络基础 4% 图像处理理论和应用 26% 语音处理理论和应用 12%

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ADM_ILMDATAMOVEMENTPOLICIES GS_ADM_ILMOBJECTS GS_ADM_ILMPOLICIES GS_ADM_ILMEVALUATIONDETAILS GS_ADM_ILMPARAMETERS GS_ADM_ILMRESULTS

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ILM GS_ILM_JOBDETAIL GS_ILM_OBJECT GS_ILM_PARAM GS_ILM_POLICY GS_ILM_TASK GS_ILM_TASKDETAIL GS_ILM_TICKER 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 字段压缩

    字段压缩 为了减少数据页面存储空间占用,节省成本,TaurusDB推出细粒度的字段压缩,提供ZLIB和ZSTD两种压缩算法,用户可以综合考虑压缩比和压缩解压性能影响,选择合适的压缩算法,对不频繁访问的大字段进行压缩。同时,字段压缩特性提供自动压缩的能力,帮助用户更方便地使用此特性。

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    什么是图像识别 图像识别(Image Recognition),是指利用计算机对图像进行分析和理解,以识别各种不同模式的目标和对象的技术,包括媒资图像标签,名人识别,主体识别,翻拍识别、图像标签等。 图像识别以开放API(Application Programming Inter

    来自:帮助中心

    查看更多 →

  • 压缩NLP大模型

    在左侧导航栏中选择“模型开发 > 模型压缩”,单击界面右上角“创建压缩任务”。参考表1创建模型压缩任务。 表1 模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。

    来自:帮助中心

    查看更多 →

  • 使用ZSTD_JNI压缩算法压缩Hive ORC表

    使用ZSTD_JNI压缩算法压缩Hive ORC表 操作场景 ZSTD_JNI是ZSTD压缩算法的native实现,相较于ZSTD而言,压缩读写效率和压缩率更优,并允许用户设置压缩级别,以及对特定格式的数据列指定压缩方式。 目前仅ORC格式的表支持ZSTD_JNI压缩方式,而普通的Z

    来自:帮助中心

    查看更多 →

  • 使用MaaS压缩模型

    16两种压缩策略。 表1 压缩策略的适用场景 压缩策略 场景 SmoothQuant-W8A8 长序列的场景 大并发量的场景 AWQ-W4A16 小并发量的低时延场景 更少推理卡数部署的场景 约束限制 表2列举了支持模型压缩的模型,不在表格里的模型不支持使用MaaS压缩模型。 表2

    来自:帮助中心

    查看更多 →

  • 概要

    本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 行列存压缩

    来讲,压缩级别越高,压缩比也越大,压缩时间也越长;反之亦然。实际压缩比取决于加载的表数据的分布特征。 table.compress.level指定表数据同一压缩级别下的不同压缩水平,它决定了同一压缩级别下表数据的压缩比以及压缩时间。对同一压缩级别进行了更加详细的划分,为用户选择压

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

  • Tensorflow训练

    创建tf-gpu.yaml文件,示例如下: 该示例的主要功能是基于Tensorflow的分布式架构,利用卷积神经网络(CNN)中的ResNet50模型对随机生成的图像进行训练,每次训练32张图像(batch_size),共训练100次(step),记录每次训练过程中的性能(image/sec)。

    来自:帮助中心

    查看更多 →

  • 行存压缩系统函数

    行存压缩系统函数 pg_get_ilmdef(pidx integer) 描述:根据输入的ilm策略索引返回对应的策略信息。 返回值类型:text 表1 pg_get_ilmdef参数说明 参数类型 参数名 类型 描述 输入参数 pidx integer ilm策略的索引。 输出参数

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC,RCFile,TextFi

    来自:帮助中心

    查看更多 →

  • 图像显示

    图像显示 OSD配置 图像套餐 图像计划 父主题: 远程配置

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了