训练GAN的16个trick 更多内容
  • 模型训练

    5”。 优化指标 AutoML任务模型优化指标,请根据实际情况选择。 验证数据集 模型验证数据集。 测试数据集 模型测试数据集。 被忽略列 数据集中不需要参与模型训练无用列。 包含模型 模型训练使用算法列表。 交叉验证折数 交叉检验折数。如果不使用交叉验证方法,请将该参数置为空。

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练新建模型训练工程时候,选择通用算法有什么作用? 使用训练模型进行在线推理推理入口函数在哪里编辑? 通过数据集导入数据后,在开发代码中如何获取这些数据? 如何在模型训练时,查看镜像中Python库版本? 如何在模型训练时,设置日志级别? 如何自定义安装python第三方库?

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练简介 创建模型训练工程 创建联邦学习工程 创建训练服务 创建超参优化服务 创建Tensorboard 打包训练模型 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 模型训练

    ow在运行过程中计算图、各种指标随着时间变化趋势以及训练中使用到数据信息。 单击图标,查看模型评估报告。 评估指标:可以通过数值和图表方式展示各项指标的数据信息。 超参:展示训练集、测试集和标签列信息。 任务系统参数:展示训练任务配置参数信息。 创建训练任务(WebIDE)

    来自:帮助中心

    查看更多 →

  • 模型训练

    模型训练 模型训练 如果您缺少自有模型训练平台,可以基于ModelArts进行模型在线训练。 根据场景选择适用摄像机。 在首页导航栏,进入“选择摄像机型号”页面。 通过不同条件筛选摄像机,单击选择需要摄像机(如X2221-VI),摄像机相关信息将显示在右侧摄像机详情窗口

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”

    来自:帮助中心

    查看更多 →

  • 训练模型

    模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很

    来自:帮助中心

    查看更多 →

  • 训练模型

    检查是否存在训练数据过少的情况,建议每个标签样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签样本数是否均衡,建议不同标签样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。

    来自:帮助中心

    查看更多 →

  • 训练模型

    近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体识别效果。 选择适当学习率和训练轮次。 通过详细评估中错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发“模型评估”步骤,详细操作指引请参见评估模型。 父主题: 无监督车牌检测工作流

    来自:帮助中心

    查看更多 →

  • 训练服务

    训练服务 训练算法 模型评测 编译镜像 编译任务 父主题: 自动驾驶云服务全流程开发

    来自:帮助中心

    查看更多 →

  • Finetune训练

    Finetune训练 本章节介绍SDXL&SD 1.5模型Finetune训练过程。Finetune是指在已经训练模型基础上,使用新数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh

    来自:帮助中心

    查看更多 →

  • 预训练

    ,则忽略。 图4 选择SFS Turbo 作业日志选择OBS中路径,ModelArts训练作业日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Stan

    来自:帮助中心

    查看更多 →

  • 预训练

    Face权重时,对应存放地址。 在“输出”输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定输出模型路径。 HF_SAVE_DIR:训练完成权重文件自动转换为Hugging Face格式权重输出路径(确保添

    来自:帮助中心

    查看更多 →

  • 预训练

    S/MBS值能够被NPU/(TP×PP×CP)值进行整除。 Step4 其他配置 选择用户自己专属资源池,以及规格与节点数。防止训练过程中出现内存溢出情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中路径,训练作业日志信息则保存该路径下。 最后

    来自:帮助中心

    查看更多 →

  • 发布训练后的NLP大模型

    发布训练NLP大模型 NLP大模型训练完成后,需要执行发布操作,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。

    来自:帮助中心

    查看更多 →

  • 发布训练后的CV大模型

    发布训练CV大模型 CV大模型训练完成后,需要执行发布操作,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。

    来自:帮助中心

    查看更多 →

  • 发布训练后的预测大模型

    发布训练预测大模型 预测大模型训练完成后,需要执行发布操作,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。

    来自:帮助中心

    查看更多 →

  • 打包训练模型

    归档名 归档模型包名。 归档版本 归档训练模型版本。 默认版本为1.0.0。 生成模型包 是否直接在归档同时打包模型包。 选择“是”,表示同时对模型执行归档和打包操作;选择“否”表示仅对模型执行归档操作。默认选择“是”。 包含代码 模型包是否包含训练和推理相关代码。 选择

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    FINISHED表示训练成功 FAILED表示训练失败。 STOPPED表示被停止训练任务。 评估报告 单击可查看训练评估报告详情。 资源占用 显示训练算法CPU、GPU和 RAM 占用情况。 峰值 显示训练算法CPU、GPU和RAM使用过程中峰值。 查看训练任务系统日志、运行日志和运行图。

    来自:帮助中心

    查看更多 →

  • 训练作业

    训练作业 新建训练作业 新建多个训练作业 查询训练作业 修改训练作业参数 删除训练作业 查询训练作业候选集 父主题: API

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了