MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    pig -x mapreduce 更多内容
  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下的MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • 配置Yarn权限控制开关

    说明: 此参数适用于 MRS 3.x及后续版本集群。 true 查看MapReduce服务配置参数 参考修改集群服务配置参数进入MapReduce服务参数“全部配置”界面,在搜索框中输入表2中参数名称。 表2 参数描述 参数 描述 默认值 mapreduce.cluster.acls.enabled

    来自:帮助中心

    查看更多 →

  • 查看Spark任务日志失败

    查看目录下是否有对应的appid文件(Spark的eventlog存放目录:MRS 3.x及以后版本的目录是hdfs://hacluster/spark2xJobHistory2x,MRS 3.x以前版本的目录是hdfs://hacluster/sparkJobHistory,任务

    来自:帮助中心

    查看更多 →

  • 快速使用Hadoop

    序。 例如,选择hadoop-x.x.x版本,下载“hadoop-x.x.x.tar.gz”,解压后在“hadoop-x.x.x\share\hadoop\mapreduce”路径下获取“hadoop-mapreduce-examples-x.x.x.jar”,即为Hadoop的

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站。 http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    MapReduce基本原理 如需使用MapReduce,请确保MRS集群内已安装Hadoop服务。 MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发常用概念

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用开发用户

    准备MapReduce应用开发用户 开发用户用于运行样例工程。用户需要有组件权限,才能运行样例工程。 前提条件 MRS服务集群开启了Kerberos认证,没有开启Kerberos认证的集群忽略该步骤。 操作步骤 登录MRS Manager,在MRS Manager界面选择“系统设置

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到Hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站:http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • 准备MapReduce样例初始数据

    准备MapReduce样例初始数据 操作场景 在调测程序之前,需要提前准备将待处理的数据。 运行MapReduce统计样例程序,请参考规划MapReduce统计样例程序数据。 运行MapReduce访问多组件样例程序,请参考规划MapReduce访问多组件样例程序数据。 规划MapReduce统计样例程序数据

    来自:帮助中心

    查看更多 →

  • (可选)创建MapReduce样例工程

    (可选)创建MapReduce样例工程 操作场景 除了导入MapReduce样例工程,您还可以使用IntelliJ IDEA新建一个MapReduce工程。 操作步骤 打开IntelliJ IDEA工具,选择“File > New > Project”,如图1所示。 图1 创建工程

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常见问题

    MapReduce应用开发常见问题 MapReduce接口介绍 提交MapReduce任务时客户端长时间无响应 MapReduce二次开发远程调试 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发常用概念

    MapReduce应用开发常用概念 Hadoop shell命令 Hadoop基本shell命令,包括提交MapReduce作业,kill MapReduce作业,进行HDFS文件系统各项操作等。 MapReduce输入输出(InputFormat,OutputFormat) M

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发环境简介

    MapReduce应用开发环境简介 在进行应用开发时,要准备的开发环境如表1所示。同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 开发环境 准备项 说明 安装Eclipse 开发环境的基本配置。版本要求:4.2。 安装JDK 版本要求:1.8版本。 父主题:

    来自:帮助中心

    查看更多 →

  • MapReduce与其他组件的关系

    MapReduce与其他组件的关系 MapReduce和HDFS的关系 HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。 MapReduce是一种编程模型,用于大数据集(大于1TB)的并

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了