MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mongodb mapreduce 原理 更多内容
  • 背景和原理(对象)

    背景和原理(对象) AstroZero提供的数据对象(Object)定义功能,对应传统方式开发业务系统中的创建数据库表。每个Object对应一张数据库表,用于保存业务系统需要的配置数据和业务数据。 对象用于存储组织或者业务特有的数据,可理解为数据库中的数据表(逻辑表,系统实际存储

    来自:帮助中心

    查看更多 →

  • 节点伸缩原理

    节点伸缩原理 HPA是针对Pod级别的,可以根据负载指标动态调整副本数量,但是如果集群的资源不足,新的副本无法运行的情况下,就只能对集群进行扩容。 CCE集群弹性引擎是Kubernetes提供的集群节点弹性伸缩组件,根据Pod调度状态及资源使用情况对集群的节点进行自动扩容缩容,同

    来自:帮助中心

    查看更多 →

  • 备份原理及方案

    备份原理及方案 RDS实例支持自动备份和手动备份,您可以定期对数据库进行备份,当数据库故障或数据损坏时,可以通过备份文件恢复数据库,从而保证数据可靠性。 云数据库RDS通过Sysbench导入数据模型和一定量的数据,备份后压缩比约为80%。其中,重复数据越多,压缩比越高。 压缩比

    来自:帮助中心

    查看更多 →

  • 迁移作业原理

    迁移作业原理 数据迁移模型 CDM 数据迁移时,简化的迁移模型如图1所示。 图1 CDM数据迁移模型 CDM通过数据迁移作业,将源端数据迁移到目的端数据源中。其中,主要运行逻辑如下: 数据迁移作业提交运行后,CDM会根据作业配置中的“抽取并发数”参数,将每个作业拆分为多个Task,即作业分片。

    来自:帮助中心

    查看更多 →

  • 迁移作业原理

    迁移作业原理 数据迁移模型 CDM数据迁移时,简化的迁移模型如图1所示。 图1 CDM数据迁移模型 CDM通过数据迁移作业,将源端数据迁移到目的端数据源中。其中,主要运行逻辑如下: 数据迁移作业提交运行后,CDM会根据作业配置中的“抽取并发数”参数,将每个作业拆分为多个Task,即作业分片。

    来自:帮助中心

    查看更多 →

  • 基本原理

    基本原理 通常UDP Flood的防御方式有两种,一种是动态指纹学习,一种是UDP限流,前者可能会将正常的业务载荷学习成攻击指纹,容易造成误杀,后者会将正常流量和攻击流量一起进行阻断,影响您的正常业务使用。 图1 设备防护原理图 如图2所示,华为云解决方案通过在UDP报文中增加水

    来自:帮助中心

    查看更多 →

  • 备份原理及方案

    备份原理及方案 RDS实例支持自动备份和手动备份,您可以定期对数据库进行备份,当数据库故障或数据损坏时,可以通过备份文件恢复数据库,从而保证数据可靠性。 云数据库RDS通过Sysbench导入数据模型和一定量的数据,备份后压缩比约为80%。其中,重复数据越多,压缩比越高。 压缩比

    来自:帮助中心

    查看更多 →

  • 备份原理及方案

    备份原理及方案 RDS实例支持自动备份和手动备份,您可以定期对数据库进行备份,当数据库故障或数据损坏时,可以通过备份文件恢复数据库,从而保证数据可靠性。 云数据库RDS通过Sysbench导入数据模型和一定量的数据,备份后压缩比约为80%。其中,重复数据越多,压缩比越高。 压缩比

    来自:帮助中心

    查看更多 →

  • MongoDB/DDS增量迁移

    MongoDB/DDS增量迁移 使用CDM导出MongoDB或者DDS的数据时,支持导出指定时间段内的数据,配合CDM的定时任务,可以实现MongoDB/DDS的增量迁移。 如果配置了时间宏变量,通过 DataArts Studio 数据开发调度CDM迁移作业时,系统会将时间宏变量替

    来自:帮助中心

    查看更多 →

  • MongoDB/DDS增量迁移

    MongoDB/DDS增量迁移 使用CDM导出MongoDB或者DDS的数据时,支持导出指定时间段内的数据,配合CDM的定时任务,可以实现MongoDB/DDS的增量迁移。 如果配置了时间宏变量,通过DataArts Studio数据开发调度CDM迁移作业时,系统会将时间宏变量替

    来自:帮助中心

    查看更多 →

  • MongoDB/DDS增量迁移

    MongoDB/DDS增量迁移 使用CDM导出MongoDB或者DDS的数据时,支持导出指定时间段内的数据,配合CDM的定时任务,可以实现MongoDB/DDS的增量迁移。 如果配置了时间宏变量,通过DataArts Studio数据开发调度CDM迁移作业时,系统会将时间宏变量替

    来自:帮助中心

    查看更多 →

  • HCIA-Big Data

    大数据技术发展趋势及鲲鹏大数据 3% HDFS分布式文件系统和 ZooKeeper 12% Hive 分布式 数据仓库 10% HBase技术原理 11% MapReduce 和 Yarn 技术原理 9% Spark 基于内存的分布式计算 7% Flink 流批一体分布式实时处理引擎 8% Flume海量日志聚合

    来自:帮助中心

    查看更多 →

  • Loader基本原理

    Loader通过MapReduce作业实现并行的导入或者导出作业任务,不同类型的导入导出作业可能只包含Map阶段或者同时Map和Reduce阶段。 Loader同时利用MapReduce实现容错,在作业任务执行失败时,可以重新调度。 数据导入到HBase 在MapReduce作业的Map阶段中从外部数据源抽取数据。

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

  • MapReduce二次开发远程调试

    MapReduce二次开发远程调试 问题 MapReduce二次开发过程中如何远程调试业务代码? 回答 MapReduce开发调试采用的原理是Java的远程调试机制,在Map/Reduce任务启动时,添加Java远程调试命令。 首先理解两个参数:“mapreduce.map.java

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    MapReduce Action 功能描述 MapReduce任务节点,负责执行一个map-reduce任务。 参数解释 MapReduce Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name map-reduce action的名称 resourceManager

    来自:帮助中心

    查看更多 →

  • 使用Mapreduce

    使用Mapreduce 配置使用分布式缓存执行MapReduce任务 配置MapReduce shuffle address 配置MapReduce集群管理员列表 通过Windows系统提交MapReduce任务 配置MapReduce任务日志归档和清理机制 MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • MapReduce Action

    MapReduce Action 功能描述 MapReduce任务节点,负责执行一个map-reduce任务。 参数解释 MapReduce Action节点中包含的各参数及其含义,请参见表1。 表1 参数含义 参数 含义 name map-reduce action的名称 resourceManager

    来自:帮助中心

    查看更多 →

  • 使用MapReduce

    使用MapReduce 配置使用分布式缓存执行MapReduce任务 配置MapReduce shuffle address 配置MapReduce集群管理员列表 通过Windows系统提交MapReduce任务 配置MapReduce任务日志归档和清理机制 MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    HDFS/HBase集群 Hive表数据存储在HDFS集群中。 MapReduce/Yarn集群 提供分布式计算服务:Hive的大部分数据操作依赖MapReduce,HiveServer的主要功能是将HQL语句转换成MapReduce任务,从而完成对海量数据的处理。 HCatalog建立在Hive

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了