MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce yarn流程图 更多内容
  • 多个NameService环境下运行MapReduce任务失败

    <property> <name>yarn.app.mapreduce.am.staging-dir</name> <value>/folder1/tmp/hadoop-yarn/staging</value> </property> 父主题: MapReduce常见问题

    来自:帮助中心

    查看更多 →

  • 提交MapReduce任务时客户端长时间无响应

    提交MapReduce任务时客户端长时间无响应 问题 向YARN 服务器 提交MapReduce任务后,客户端长时间无响应。 回答 对于上述出现的问题,ResourceManager在其WebUI上提供了MapReduce作业关键步骤的诊断信息,对于一个已经提交到YARN上的MapR

    来自:帮助中心

    查看更多 →

  • YARN应用开发简介

    随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有更好的扩展性、可用性、可靠性、向后

    来自:帮助中心

    查看更多 →

  • Yarn汇聚日志过大导致节点磁盘被占满

    Manager,选择“服务管理 > Mapreduce > 服务配置 > 全部配置”。 FusionInsight Manager界面操作:登录FusionInsight Manager,选择“集群 > 服务 > Mapreduce > 配置 > 全部配置”。 搜索“yarn.log-aggregation

    来自:帮助中心

    查看更多 →

  • 配置Yarn通过Guardian访问OBS

    obs://OBS并行文件系统名称/hadoop1 执行以下Yarn任务访问OBS: yarn jar 客户端安装目录/HDFS/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar pi -Dmapreduce.job.hdfs-servers=NAMESERVICE

    来自:帮助中心

    查看更多 →

  • ResourceManager进行主备切换后,任务中断后运行时间过长

    1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3.3.1/hadoop-yarn/hadoop-yarn-site/R

    来自:帮助中心

    查看更多 →

  • ResourceManager进行主备切换后,任务中断后运行时间过长

    1/hadoop-yarn/hadoop-yarn-site/ResourceManagerRestart.html MRS 3.2.0及之后版本:https://hadoop.apache.org/docs/r3.3.1/hadoop-yarn/hadoop-yarn-site/R

    来自:帮助中心

    查看更多 →

  • 配置AM作业自动保留

    参考修改集群服务配置参数进入Yarn服务参数“全部配置”界面,在搜索框中输入参数名称。 根据表1,对如下参数进行设置。 表1 AM作业保留相关参数 参数 说明 默认值 yarn.app.mapreduce.am.work-preserve 是否开启AM作业保留特性。 false yarn.app.mapreduce

    来自:帮助中心

    查看更多 →

  • MapReduce与其他组件的关系

    MapReduce与其他组件的关系 MapReduce和HDFS的关系 HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。 MapReduce是一种编程模型,用于大数据集(大于1TB)的并

    来自:帮助中心

    查看更多 →

  • 在Linux环境中调测MapReduce应用

    在Linux环境中调测MapReduce应用 操作场景 在程序代码完成开发后,可以在Linux环境中运行应用。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 通过运行结果查看程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。 登录Yarn

    来自:帮助中心

    查看更多 →

  • 编译并运行MapReduce应用

    命令中使用的jar包请根据集群中对应路径下的实际版本修改。 提交MapReduce任务,执行如下命令,运行样例工程。运行样例工程前需要根据实际环境修改认证信息。 yarn jar mapreduce-examples-1.0.jar com.huawei.bigdata.mapreduce.examples.MultiComponentExample

    来自:帮助中心

    查看更多 →

  • YARN接口介绍

    YARN接口介绍 YARN Command介绍 YARN Java API接口介绍 YARN REST API接口介绍 Superior Scheduler REST API接口介绍 父主题: YARN开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • YARN接口介绍

    YARN接口介绍 YARN Command介绍 YARN Java API接口介绍 YARN REST API接口介绍 Superior Scheduler REST API接口介绍 父主题: YARN开发指南(安全模式)

    来自:帮助中心

    查看更多 →

  • YARN Command介绍

    s。而大部分只有管理员有权限使用。 用户可以通过以下命令查看YARN用法和帮助: yarn --help 用法:进入Yarn客户端的任意目录,执行source命令导入环境变量,直接运行命令即可。 格式如下所示: yarn [--config confdir] COMMAND 其中COMMAND内容请参考表1。

    来自:帮助中心

    查看更多 →

  • YARN Command介绍

    s。而大部分只有管理员有权限使用。 用户可以通过以下命令查看YARN用法和帮助: yarn --help 用法:进入Yarn客户端的任意目录,执行source命令导入环境变量,直接运行命令即可。 格式如下所示: yarn [--config confdir] COMMAND 其中COMMAND可以为:

    来自:帮助中心

    查看更多 →

  • 在Linux环境中调测MapReduce应用

    在Linux环境中调测MapReduce应用 操作场景 在程序代码完成开发后,您可以在Linux环境中运行应用。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 通过运行结果查看程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。

    来自:帮助中心

    查看更多 →

  • MapReduce大任务的AM调优

    参数入口: 在Yarn客户端的“mapred-site.xml”配置文件中调整如下参数。“mapred-site.xml”配置文件在客户端安装路径的conf目录下,例如“/opt/client/Yarn/config”。 参数 描述 默认值 yarn.app.mapreduce.am.resource

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    它们的键缩小键/值对列表。MapReduce起到了将大事务分散到不同设备处理的能力,这样原来必须用单台较强服务器才能运行的任务,在分布式环境下也能完成。 更多信息,请参阅MapReduce教程。 MapReduce结构 MapReduce通过实现YARN的Client和Appli

    来自:帮助中心

    查看更多 →

  • 在Linux环境中调测MapReduce应用

    在Linux环境中调测MapReduce应用 操作场景 在程序代码完成开发后,您可以在Linux环境中运行应用。 MapReduce应用程序运行完成后,可通过如下方式查看应用程序的运行情况。 通过运行结果查看程序运行情况。 登录MapReduce WebUI查看应用程序运行情况。

    来自:帮助中心

    查看更多 →

  • 配置使用分布式缓存执行MapReduce任务

    了行为的不一致,并可能发生运行时错误。 同时存在多个Yarn版本 集群管理员可能会在一个集群内运行使用多个版本Yarn及Hadoop jars的任务。这在当前很难实现,因为jars已被本地化且只有一个版本。 MapReduce应用框架可以通过分布式缓存进行部署,且无需依赖安装中复

    来自:帮助中心

    查看更多 →

  • YARN应用开发简介

    随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有更好的扩展性、可用性、可靠性、向后

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了