MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce压缩 更多内容
  • 配置智能压缩

    配置智能压缩 开启智能压缩功能时,CDN会自动压缩您的静态文件。智能压缩能够有效缩小传输文件的大小,提升传输效率,减少带宽消耗。智能压缩包含Gzip压缩和Brotli压缩,Brotli压缩的性能比Gzip压缩提升约15%~25%。 注意事项 如果源站配置了MD5值校验,请勿开启此

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ADM_ILMDATAMOVEMENTPOLICIES GS_ADM_ILMOBJE CTS GS_ADM_ILMPOLICIES GS_ADM_ILMEVALUATIONDETAILS GS_ADM_ILMPA RAM ETERS GS_ADM_ILMRESULTS

    来自:帮助中心

    查看更多 →

  • 字段压缩

    字段压缩 为了减少数据页面存储空间占用,节省成本,TaurusDB推出细粒度的字段压缩,提供ZLIB和ZSTD两种压缩算法,用户可以综合考虑压缩比和压缩解压性能影响,选择合适的压缩算法,对不频繁访问的大字段进行压缩。同时,字段压缩特性提供自动压缩的能力,帮助用户更方便地使用此特性。

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ILM GS_ILM_JOBDETAIL GS_ILM_OBJECT GS_ILM_PARAM GS_ILM_POLICY GS_ILM_TASK GS_ILM_TASKDETAIL GS_ILM_TICKER 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ADM_ILMDATAMOVEMENTPOLICIES GS_ADM_ILMOBJECTS GS_ADM_ILMPOLICIES GS_ADM_ILMEVALUATIONDETAILS GS_ADM_ILMPARAMETERS GS_ADM_ILMRESULTS

    来自:帮助中心

    查看更多 →

  • OLTP表压缩

    OLTP表压缩 GS_ILM GS_ILM_JOBDETAIL GS_ILM_OBJECT GS_ILM_PARAM GS_ILM_POLICY GS_ILM_TASK GS_ILM_TASKDETAIL GS_ILM_TICKER 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 使用ZSTD_JNI压缩算法压缩Hive ORC表

    使用ZSTD_JNI压缩算法压缩Hive ORC表 操作场景 ZSTD_JNI是ZSTD压缩算法的native实现,相较于ZSTD而言,压缩读写效率和压缩率更优,并允许用户设置压缩级别,以及对特定格式的数据列指定压缩方式。 目前仅ORC格式的表支持ZSTD_JNI压缩方式,而普通的Z

    来自:帮助中心

    查看更多 →

  • 压缩NLP大模型

    在左侧导航栏中选择“模型开发 > 模型压缩”,单击界面右上角“创建压缩任务”。参考表1创建模型压缩任务。 表1 模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。

    来自:帮助中心

    查看更多 →

  • 使用MaaS压缩模型

    16两种压缩策略。 表1 压缩策略的适用场景 压缩策略 场景 SmoothQuant-W8A8 长序列的场景 大并发量的场景 AWQ-W4A16 小并发量的低时延场景 更少推理卡数部署的场景 约束限制 表2列举了支持模型压缩的模型,不在表格里的模型不支持使用MaaS压缩模型。 表2

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC,RCFile,TextFi

    来自:帮助中心

    查看更多 →

  • Hive支持ZSTD压缩格式

    Hive支持ZSTD压缩格式 ZSTD(全称为Zstandard)是一种开源的无损数据压缩算法,其压缩性能和压缩比均优于当前Hadoop支持的其他压缩格式,本特性使得Hive支持ZSTD压缩格式的表。Hive支持基于ZSTD压缩的存储格式有常见的ORC、RCFile、TextFi

    来自:帮助中心

    查看更多 →

  • 行列存压缩

    来讲,压缩级别越高,压缩比也越大,压缩时间也越长;反之亦然。实际压缩比取决于加载的表数据的分布特征。 table.compress.level指定表数据同一压缩级别下的不同压缩水平,它决定了同一压缩级别下表数据的压缩比以及压缩时间。对同一压缩级别进行了更加详细的划分,为用户选择压

    来自:帮助中心

    查看更多 →

  • 行存压缩系统函数

    行存压缩系统函数 pg_get_ilmdef(pidx integer) 描述:根据输入的ilm策略索引返回对应的策略信息。 返回值类型:text 表1 pg_get_ilmdef参数说明 参数类型 参数名 类型 描述 输入参数 pidx integer ilm策略的索引。 输出参数

    来自:帮助中心

    查看更多 →

  • 多CPU内核下MapReduce调优配置

    Map输出与压缩 Map任务所产生的输出可以在写入磁盘之前被压缩,这样可以节约磁盘空间并得到更快的写盘速度,同时可以减少至Reducer的数据传输量。需要在客户端进行配置。 mapreduce.map.output.compress指定了Map任务输出结果可以在网络传输前被压缩。这是一个per-job的配置。

    来自:帮助中心

    查看更多 →

  • MapReduce

    MapReduce MapReduce基本原理 MapReduce与其他组件的关系 MapReduce开源增强特性 父主题: 组件介绍

    来自:帮助中心

    查看更多 →

  • MapReduce Shuffle调优

    著减少网络传输的数据量,但是也因为多了压缩和解压,带来了更多的CPU消耗。因此需要做好权衡。当任务属于网络瓶颈类型时,压缩Map中间结果效果明显。针对bulkload调优,压缩中间结果后性能提升60%左右。 配置方法:将“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce Shuffle调优

    著减少网络传输的数据量,但是也因为多了压缩和解压,带来了更多的CPU消耗。因此需要做好权衡。当任务属于网络瓶颈类型时,压缩Map中间结果效果明显。针对bulkload调优,压缩中间结果后性能提升60%左右。 配置方法:将“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • 配置parquet表的压缩格式

    配置parquet表的压缩格式 配置场景 当前版本对于parquet表的压缩格式分以下两种情况进行配置: 对于分区表,需要通过parquet本身的配置项“parquet.compression”设置parquet表的数据压缩格式。如在建表语句中设置tblproperties:"parquet

    来自:帮助中心

    查看更多 →

  • 多CPU内核下的MapReduce调优配置

    doop/etc/hadoop/mapred-site.xml。 Map输出与压缩 mapreduce.map.output.compress 参数解释:指定了Map任务输出结果可以在网络传输前被压缩。这是一个per-job的配置。 默认值:true 参数入口:需要在客户端进行配

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    RawComparator> cls) 指定MapReduce作业的map任务的输出结果压缩类,默认不使用压缩。也可以在“mapred-site.xml”中配置“mapreduce.map.output.compress”和“mapreduce.map.output.compress

    来自:帮助中心

    查看更多 →

  • MapReduce日志介绍

    日志归档规则: MapReduce的日志启动了自动压缩归档功能,缺省情况下,当日志大小超过50MB的时候,会自动压缩压缩后的日志文件名规则为:“<原有日志名>-<yyyy-mm-dd_hh-mm-ss>.[编号].log.zip”。最多保留最近的100个压缩文件,压缩文件保留个数可以在参数配置界面中配置。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了