GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU云运算供应商 更多内容
  • 使用Kubernetes默认GPU调度

    通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re

    来自:帮助中心

    查看更多 →

  • 获取供应商logo和名称设置

    获取供应商logo和名称设置 使用get命令获取供应商logo和名称配置,默认将供应商logo图片下载到本地路径。 命令结构 health get vendor-config [flags] # 其中vendor-config可简写为vc 命令示例 本节以Windows为例介绍e

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU 服务器 出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    性不做额外校验。 gpu-device-plugin插件仅提供驱动的下载及安装脚本执行功能,插件的状态仅代表插件本身功能正常,与驱动是否安装成功无关。 gpu型号只支持T4、V100。 本地集群只支持华为欧拉操作系统 2.0 x86系统架构类型。 纳管gpu节点前,请确保节点依赖libsecurec已安装。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速型 云服务器 时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 系统配置和供应商配置

    系统配置和供应商配置 查询系统配置列表 获取供应商配置 设置供应商配置 获取跨域归档配置 修改跨域归档设置 父主题: 系统管理

    来自:帮助中心

    查看更多 →

  • GPU驱动异常怎么办?

    nvidia-smi: command not found 可能原因 云服务器驱动异常、没有安装驱动或者驱动被卸载。 处理方法 如果未安装GPU驱动,请重新安装GPU驱动。 操作指导请参考:安装GPU驱动 如果已安装驱动,但是驱动被卸载。 执行history,查看是否执行过卸载操作。

    来自:帮助中心

    查看更多 →

  • 字符串函数和运算符

    字符串函数和运算符 字符串运算符 ||表示字符连接 SELECT 'he'||'llo'; –hello 字符串函数 这些函数假定输入字符串包含有效的UTF-8编码的Unicode代码点。不会显式检查UTF-8数据是否有效,对于无效的UTF-8数据,函数可能会返回错误的结果。可以

    来自:帮助中心

    查看更多 →

  • 销售场景限制说明

    客户为如下目的而使用云桌面,由于场景与方案能力不匹配,禁止销售。 嵌入式开发,硬件开发的烧录场景 NA 嵌入式开发涉及硬件烧录,烧录场景对网络时延和抖动非常敏感,云桌面跨网络的技术架构无法满足要求,禁止销售。 模拟器仿真场景(如:安卓开发) 模拟器仿真涉及嵌套虚拟化,华为平台不支持嵌套虚拟化功能,禁止销售。

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    bash mirrors_source.sh 更多内容,请参见如何使用自动化工具配置华为镜像源(x86_64和ARM)? 执行以下命令,安装lspci工具。 CentOS系统: yum install pciutils Ubuntu系统: apt install pciutils

    来自:帮助中心

    查看更多 →

  • 字符串函数和运算符

    字符串函数和运算符 字符串运算符 ||表示字符连接 SELECT 'he'||'llo'; --hello 字符串函数 这些函数假定输入字符串包含有效的UTF-8编码的Unicode代码点。不会显式检查UTF-8数据是否有效,对于无效的UTF-8数据,函数可能会返回错误的结果。可

    来自:帮助中心

    查看更多 →

  • 如何处理GPU掉卡问题

    a1),请继续按照处理方法处理;如果查找不到显卡或者显示状态为rev ff,请根据显卡故障诊断及处理方法进行故障诊断。规格对应显卡数量可以通过GPU加速型查询。 lspci | grep -i nvidia 处理方法 非CCE集群场景,建议尝试自行重装驱动,或升级驱动版本后执行nvidi

    来自:帮助中心

    查看更多 →

  • 兼容Kubernetes默认GPU调度模式

    兼容Kubernetes默认GPU调度模式 开启GPU虚拟化后,默认该GPU节点不再支持使用Kubernetes默认GPU调度模式的工作负载,即不再支持使用nvidia.com/gpu资源的工作负载。如果您在集群中已使用nvidia.com/gpu资源的工作负载,可在gpu-device-p

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了