GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU云并行运算厂家 更多内容
  • 关于GDS并行导入

    数据量大,数据存储在多个 服务器 上时,在每个数据服务器上安装配置、启动GDS后,各服务器上的数据可以并行入库。如图2所示。 图2 多数据服务器并行导入 GDS进程数目不能超过DN数目。如果超过,会出现一个DN连接多个GDS进程的情形,可能会导致部分GDS异常运行。 数据存储在一台数据服务器上时,如

    来自:帮助中心

    查看更多 →

  • 关于OBS并行导出

    相关概念 数据源文件:存储有数据的TEXT、 CS V文件。 OBS:对象存储服务,是一种可存储文档、图片、影音视频等非结构化数据的存储服务。从 GaussDB (DWS)并行导出数据时,数据对象放置在OBS服务器上。 桶(Bucket):对OBS中的一个存储空间的形象称呼,是存储对象的容器。

    来自:帮助中心

    查看更多 →

  • 关于GDS并行导出

    支持多个GDS服务并发导出,但1个GDS在同一时刻,只能为1个集群提供导出服务。 配置与集群节点处于统一内网的GDS服务,导出速率受网络带宽影响,推荐的网络配置为10GE。 支持数据文件格式:TEXT、CSV和FIXED。单行数据大小需<1GB。 导出流程 图2 并行导出流程 表1

    来自:帮助中心

    查看更多 →

  • 如何并行创建索引?

    如何并行创建索引? 答:参考如下方法: --设置maintenance_work_mem参数根据实际情况调整该大小。 gaussdb=# SET maintenance_work_mem = '8GB'; --建表。 gaussdb=# CREATE TABLE table_name

    来自:帮助中心

    查看更多 →

  • 设置并行度

    个节点。增加任务的并行度,充分利用集群机器的计算能力,一般并行度设置为集群CPU总和的2-3倍。 操作步骤 并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。 在会产生shuffle的操作函数内设置并行度参数,优先级最高。

    来自:帮助中心

    查看更多 →

  • 如何并行创建索引?

    如何并行创建索引? 答:参考如下方法: --设置maintenance_work_mem参数根据实际情况调整该大小。 gaussdb=# SET maintenance_work_mem = '8GB'; --建表。 gaussdb=# CREATE TABLE table_name

    来自:帮助中心

    查看更多 →

  • SMP并行执行

    各个算子的并行情况。 非适用场景: 生成计划时间占比很高的短查询场景。 不支持CN上的算子并行。 不支持不能下推的查询并行执行。 不支持子查询subplan的并行,以及包含子查询的算子并行。 资源对SMP性能的影响 SMP架构是一种利用富余资源来换取时间的方案,计划并行之后必定会

    来自:帮助中心

    查看更多 →

  • 日期、时间函数及运算符

    日期、时间函数及运算符 日期时间运算运算符 示例 结果 + date '2012-08-08' + interval '2' day 2012-08-10 + time '01:00' + interval '3' hour 04:00:00.000 + timestamp '2012-08-08

    来自:帮助中心

    查看更多 →

  • 华为云并行文件系统迁移教程

    华为并行文件系统迁移教程 并行文件系统(Parallel File System)是对象存储提供的一种经过优化的高性能文件语义系统,提供毫秒级别访问时延,TB/s级别带宽和百万级别的IOPS。 作为对象存储的子产品,并行文件系统的迁移方法与 对象存储迁移 方法一致。 创建迁移任务可参见创建迁移任务。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    性不做额外校验。 gpu-device-plugin插件仅提供驱动的下载及安装脚本执行功能,插件的状态仅代表插件本身功能正常,与驱动是否安装成功无关。 gpu型号只支持T4、V100。 本地集群只支持华为欧拉操作系统 2.0 x86系统架构类型。 纳管gpu节点前,请确保节点依赖libsecurec已安装。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • 日期、时间函数及运算符

    日期、时间函数及运算符 日期时间运算运算符 示例 结果 + date '2012-08-08' + interval '2' day 2012-08-10 + time '01:00' + interval '3' hour 04:00:00.000 + timestamp '2012-08-08

    来自:帮助中心

    查看更多 →

  • 挂载OBS使用限制

    'true' : 表示挂载OBS需要创建obssidecar容器。 挂载obs并行文件系统时,obssidecar容器需预留一定内存以保障业务可靠性,防止容器因资源不足异常退出。当业务容器挂载单个obs并行文件系统时,CPU和内存规格建议配置如下: "obssidecar-injector-webhook/cpu":

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了