GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU并行运算主机技术 更多内容
  • 算术运算符

    算术运算符 算术运算符包括双目运算与单目运算,这些运算符都将返回数字类型。 DLI 所支持的算术运算符如表1所示。 表1 算术运算运算符 返回类型 描述 A + B 所有数字类型 A和B相加。结果数据类型与操作数据类型相关,例如一个整数类型数据加上一个浮点类型数据,结果数值为浮点类型数据。

    来自:帮助中心

    查看更多 →

  • SQL比较运算符

    SQL比较运算符 功能描述 比较运算符用于比较两个值,并返回真(true)或假(false)。比较运算符可以对数值类型进行大小比较,对STRING类型进行包含比较,比如数值类型的字段num1 < num2是否为真,STRING类型的str1是否存在于字符串strs中等,具体请参见表1。

    来自:帮助中心

    查看更多 →

  • 用户指南

    MySQL)发布的旨在提高数据查询效率的计算下推的解决方案。针对数据密集型查询,将提取列、聚合运算、条件过滤等操作从计算节点向下推送给 GaussDB (for MySQL)的分布式存储层的多个节点,并行执行。通过计算下推方法,提升了并行处理能力,减少网络流量和计算节点的压力,提高了查询处理执行效率。 架构

    来自:帮助中心

    查看更多 →

  • 离线异步任务场景

    在触发调用后立即得到返回,从而不因长耗时处理阻塞业务主逻辑的执行。 实时感知任务状态 无 并行处理 离线GPU任务需要处理大量数据,对GPU资源供给要求高,通过API调用并行运行加快处理速度。 数据源集成 离线GPU任务对数据源的需求多种多样,处理过程中需要与多种存储产品(例如 对象存储OBS

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 下图展示在 app 中集成视频通话的基本工作流程: 图2-1技术原理

    来自:帮助中心

    查看更多 →

  • 技术模型

    从工具箱中拖入框架、服务、数据库、组件等等技术元素对象到技术模型图中,从工程树上引用逻辑模型中定义的涉及关键技术的逻辑对象“功能服务APIGW”,建立如下图所示技术部件和技术栈逻辑对象关联的模型结构: 如果当技术模型设计图形比较复杂时,可以参考逻辑模型中的分层结构,创建多个技术模型,分解来画各功能和特性之间的结构关系。

    来自:帮助中心

    查看更多 →

  • 技术架构

    技术架构 创建技术架构 复制技术架构 创建技术适配器 父主题: 信息架构

    来自:帮助中心

    查看更多 →

  • 创建普通任务(Job)

    器规格。 GPU配额(可选) 当集群中包含GPU节点时,才能设置GPU配额,且集群中需安装CCE AI套件(NVIDIA GPU)插件。 不限制:表示不使用GPU。 独享:单个容器独享GPU。 共享:容器需要使用的GPU百分比,例如设置为10%,表示该容器需使用GPU资源的10%。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    MySQL)发布的旨在提高数据查询效率的计算下推的解决方案。针对数据密集型查询,将提取列、聚合运算、条件过滤等操作从计算节点向下推送给GaussDB(for MySQL)的分布式存储层的多个节点,并行执行。通过计算下推方法,提升了并行处理能力,减少网络流量和计算节点的压力,提高了查询处理执行效率。 工作原理

    来自:帮助中心

    查看更多 →

  • 逻辑运算符

    逻辑运算符 常用的逻辑操作符有AND、OR和NOT,它们的运算结果有三个值,分别为TRUE、FALSE和NULL,其中NULL代表未知。优先级顺序为:NOT>AND>OR。 运算规则请参见表1,表中的A和B代表逻辑表达式。 表1 逻辑运算运算符 返回类型 描述 A AND B

    来自:帮助中心

    查看更多 →

  • Json函数和运算符

    Json函数和运算符 Cast to JSON SELECT CAST(9223372036854775807 AS JSON); -- JSON '9223372036854775807' Cast from JSON SELECT CAST(JSON '[1,23,456]'

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型E CS GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 应用安全的原理如图1所示。 图1 应用安全原理图 父主题: 应用安全介绍

    来自:帮助中心

    查看更多 →

  • 技术模型

    技术模型的基础构造型与自定义构造型元素才认定为技术元素)。 在技术模型图上创建出来的技术元素; 引用到技术模型中的技术元素(包含关联空间中的引用的技术元素); 如何检查 查询基于模型图(只有技术模型图内的技术元素参与构树)并展示不匹配元素构出的技术模型架构树,找出所有技术元素中不在架构树中的技术元素。 正确示例

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 父主题: CA代理服务介绍

    来自:帮助中心

    查看更多 →

  • 技术原理

    技术原理 CA服务技术原理图请参见图1。 图1 CA服务技术原理 用户在通过CA服务申请证书时,需要根据实际需求来配置CA信息、证书模板、白名单和CRL等信息。 申请证书方式: 手动申请:分为通过基本信息申请证书、通过上传CSR文件申请证书两种方式。 自动申请:通过配置CMP协

    来自:帮助中心

    查看更多 →

  • 安装GPU指标集成插件

    暂不支持CCE纳管后的GPU加速型实例。 前提条件 已安装GPU驱动,未安装lspci工具的 云服务器 影响GPU掉卡事件的上报。 如果您的弹性 服务器 未安装GPU驱动,请参见GPU驱动概述安装GPU驱动。 安装GPU驱动需使用默认路径。 GPU驱动安装完后,需重启GPU加速型实例,否则可能

    来自:帮助中心

    查看更多 →

  • 部署 CodeArts Deploy

    用,提供20+原子步骤自由编排组装应用,一个应用同时部署到多台主机和环境,每个原子步骤独立输出清晰日志,部署失败时能够快速定位原因并解决。 环境管理 环境管理 主机管理 主机管理 主机连通方式 02 入门 当前部署服务提供了SpringBoot应用部署、Tomcat应用部署、Dj

    来自:帮助中心

    查看更多 →

  • GPU驱动不可用

    方法一:重新启动,选择安装GPU驱动时的内核版本,即可使用GPU驱动。 在云服务器操作列下单击“远程登录 > 立即登录”。 单击远程登录操作面板上方的“发送CtrlAltDel”按钮,重启虚拟机。 然后快速刷新页面,按上下键,阻止系统继续启动,选择安装GPU驱动时的内核版本进入系统

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 创建GPU虚拟化应用 监控GPU虚拟化资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 UCS On Premises GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了