赞奇超高清云工作站解决方案实践

赞奇超高清云工作站解决方案实践

    权限表设计 更多内容
  • 设计服务权限

    应用开发人员:拥有应用设计态的开发权限。进入应用设计态,应用责任人可以定义用户和该角色的关系。 应用只读成员:拥有应用设计态的只读权限。进入应用设计态,应用责任人可以定义用户和该角色的关系。 1 首页 二级菜单 功能 应用责任人 应用开发人员 应用只读成员 数据看板 查询 √ √ √ 2 我的工作空间

    来自:帮助中心

    查看更多 →

  • 表设计

    以防可能出现的数据溢出。 1 的分区方式及使用场景 分区方式 描述 Range 数据通过范围进行分区。 Interval 数据通过范围进行分区,超出范围的会自动根据间隔创建新的分区。 List 数据通过指定列按照具体值进行分区。 Hash 数据通过Hash散列方式进行分区。

    来自:帮助中心

    查看更多 →

  • 表设计

    组条件的仔细设计,能够尽可能的减少不必要的数据shuffle。 选择分布方案 的分布方式的选择如2 的分布方式及使用场景所示。 1 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication

    来自:帮助中心

    查看更多 →

  • 表设计

    防止可能出现的数据溢出。 1 的分区方式及使用场景 分区方式 描述 Range 数据通过范围进行分区。 Interval 数据通过范围进行分区,超出范围的会自动根据间隔创建新的分区。 List 数据通过指定列按照具体值进行分区。 Hash 数据通过Hash散列方式进行分区。

    来自:帮助中心

    查看更多 →

  • 表设计

    【建议】的分布方式的选择一般遵循以下原则: 2 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication 集群中每一个DN都有一份全量数据。 维度、数据量较小的事实。 Range

    来自:帮助中心

    查看更多 →

  • 表设计

    关联条件和分组条件的仔细设计,能够尽可能的减少不必要的数据shuffle。 选择分布方案 的分布方式的选择如1所示。 1 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication

    来自:帮助中心

    查看更多 →

  • 表设计

    【建议】的存储类型是定义设计的第一步,客户业务类型是决定的存储类型的主要因素,存储类型的选择依据请参考1。 1 的存储类型及场景 存储类型 适用场景 行存 点查询(返回记录少,基于索引的简单查询)。 增、删、改操作较多的场景。 选择分区方案 当中的数据量很大时,应当对进行分区,一般需要遵循以下原则:

    来自:帮助中心

    查看更多 →

  • 账表设计

    于日后按分类查找报。 图3 账分类 在账分类上新建报,设置报编码、名称等信息。 图4 新建账 新建报后报是没有样式的,还需要针对新建的报设计该报的格式。设计格式之初,首先选择合适的数据模型,然后进行报格式设计。 图5 数据模型选择 根据业务需要的样式拖拽左侧

    来自:帮助中心

    查看更多 →

  • 表设计最佳实践

    设计最佳实践 使用分区 选择数据类型 父主题: 最佳实践

    来自:帮助中心

    查看更多 →

  • 表设计最佳实践

    设计最佳实践 选择分布方式 选择分布列 使用分区 选择数据类型 查看所在节点 父主题: 最佳实践

    来自:帮助中心

    查看更多 →

  • 表设计最佳实践

    设计最佳实践 选择存储模型 使用分区 选择数据类型 父主题: 最佳实践

    来自:帮助中心

    查看更多 →

  • 表设计最佳实践

    设计最佳实践 选择存储模型 选择分布方式 选择分布列 使用分区 选择数据类型 查看所在节点 父主题: 最佳实践

    来自:帮助中心

    查看更多 →

  • 如何设计宽表主键

    如何设计主键 GeminiDB Cassandra是一款分布式数据引擎,宽引擎中的数据均按照主键进行分布。在执行查询时,如果中存在多列主键,系统会从最左边的主键开始匹配。如果主键设置不当,则可能导致主键无法被有效利用,进而产生热点问题,影响查询性能。因此,在数据分区和数据

    来自:帮助中心

    查看更多 →

  • ClickHouse宽表设计

    ClickHouse宽设计 ClickHouse宽设计原则 ClickHouse字段设计 ClickHouse本地设计 ClickHouse分布式设计 ClickHouse分区设计 ClickHouse索引设计 父主题: ClickHouse应用开发规范

    来自:帮助中心

    查看更多 →

  • 示例:某部门权限设计及配置

    所以在配置权限前需要先进行详细设计,并在设置权限之前提前为每个成员创建用户名,便于后续对用户进行用户组归属和权限设置。 下图为某公司某部门的组织架构图和相关人员的权限设计,本文将按照该设计对每个角色的权限设置进行演示: 主管:DAVID 用户“DAVID”为该公司某部门的主管,根

    来自:帮助中心

    查看更多 →

  • 示例:某公司权限设计及配置

    访客:预留的只读权限团队,指那些仅具有查看资源权限的人员。 通过1,给公司不同的职能团队设置不同的权限,可以实现各团队之间权限隔离,各司其职。 1 权限设置 职能团队 需要授予的策略 权限说明 行管团队 U CS FullAccess UCS服务管理员权限,拥有该权限的用户拥有服务

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    支持的并发度。通过对关联条件和分组条件的仔细设计,能够尽可能的减少不必要的数据shuffle。 选择存储方案 【建议】的存储类型是定义设计的第一步,用户业务类型是决定的存储类型的主要因素,存储类型的选择依据请参考1。 1 的存储类型及场景 存储模型 优点 缺点 适用场景

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    【建议】的分布方式的选择一般遵循以下原则: 2 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication 集群中每一个DN都有一份全量数据。 维度、数据量较小的事实。 Roundrobin

    来自:帮助中心

    查看更多 →

  • Hudi表模型设计规范

    流式计算采用MOR。 流式计算为低时延的实时计算,需要高性能的流式读写能力,在Hudi中存在的MOR和COW两种模型中,MOR的流式读写性能相对较好,因此在流式计算场景下采用MOR模型。关于MOR在读写性能的对比关系如下: 对比维度 MOR COW 流式写 高 低 流式读

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 【建议】除非视图之间存在强依赖关系,否则不建议视图嵌套。 【建议】视图定义中尽量避免排序操作。 关联设计 【建议】之间的关联字段应该尽量少。 【建议】关联字段的数据类型应该保持一致。 【建议】关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。

    来自:帮助中心

    查看更多 →

  • ClickHouse宽表设计原则

    ClickHouse宽设计原则 宽设计原则 由于ClickHouse的宽查询性能较优,且当前ClickHouse可支持上万列的宽横向扩展。 在大部分场景下,有大join以及多join的场景,且多个join的数据变化更新频率较低,这种情况,建议对多个join查询逻辑提

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了