盘古大模型

 

盘古大模型致力于深耕行业,打造金融、政务、制造、矿山、气象、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合,重塑千行百业,成为各组织、企业、个人的专家助手。

 
 

    AI大模型 更多内容
  • 附录:大模型推理常见问题

    _model.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Lite Cluster适配PyTorch

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古模型效果最优 如何判断盘古模型训练状态是否正常 如何评估微调后的盘古模型是否正常 如何调整推理参数,使盘古模型效果最优 为什么微调后的盘古模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    “微调”。模型选择完成后,参考表1完成训练参数设置。 表1 NLP模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古模型模型类型 选择“NLP模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对模型的全部参数进

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型训练任务

    管理NLP模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:

    来自:帮助中心

    查看更多 →

  • 开发盘古大模型提示词工程

    开发盘古模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词

    来自:帮助中心

    查看更多 →

  • 发布训练后的NLP大模型

    发布训练后的NLP模型 NLP模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产

    来自:帮助中心

    查看更多 →

  • 8大特色压测模型简介

    8特色压测模型简介 性能测试服务沉淀了30年高并发测试工程方案与实践,提供了浪涌(突发流量)、智能摸高(系统性能摸底)、震荡(模拟高低峰)、TPS模式(压力自定义)等8模式,快速构建真实场景,助力产品压测场景覆盖率提升50%,满足客户全场景的压测诉求。 压力测试支持的8种模式如下:

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启。 父主题: 主流开源模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    _model.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Standard适配PyTorch

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3

    来自:帮助中心

    查看更多 →

  • 发布和管理AI Gallery模型

    发布和管理AI Gallery模型 构建模型 托管模型AI Gallery 发布模型AI Gallery 管理AI Gallery模型 父主题: AI Gallery(新版)

    来自:帮助中心

    查看更多 →

  • 产品介绍

    SDK的设计,同时还提供数据联动方案的设计与规划,致力于加速AI大模型训练 面向有AI大模型训练云存储性能瓶颈的客户提供性能诊断与性能优化方案设计服务,助力加速AI大模型训练并降低成本。 SFS Turbo AI大模型性能诊断与优化服务增量包 云存储性能诊断与优化服务 服务规格 服务内容 适用场景

    来自:帮助中心

    查看更多 →

  • 上架模型包至AI市场

    上架模型包至AI市场 单击模型包所在操作列的图标。 弹出提交确认提醒,如果确认提交,即将启动上架流程,提交模型到开发者空间,等待应用市场认证审批。 在“确认”弹框内单击“确定”。 系统提示启动上架流程成功,“上架状态”会显示模型包上架状态。 父主题: 模型管理

    来自:帮助中心

    查看更多 →

  • 使用云存储优化与提升服务获得的最终交付件是什么?

    使用云存储优化与提升服务获得的最终交付件是什么? 购买云存储AI大模型性能诊断与优化服务-SFS Turbo AI大模型性能诊断与优化服务基础包/增量包会获得交付件《华为云AI大模型存储方案规划设计书》,含对企业业务系统的调研结果、存储性能诊断,资源配置建议和详细的配置指南。 购

    来自:帮助中心

    查看更多 →

  • 将AI Gallery中的模型部署为AI应用

    AI Gallery中的模型部署为AI应用 AI Gallery支持将模型部署为AI应用,在线共享给其他用户使用。 前提条件 选择的模型必须是支持部署为AI应用的模型,否则模型详情页没有“部署 > AI应用”选项。 部署AI应用 登录AI Gallery。 单击“模型”进入模型列表。

    来自:帮助中心

    查看更多 →

  • 使用大模型在ModelArts Standard创建模型部署在线服务

    使用模型在ModelArts Standard创建模型部署在线服务 背景说明 目前模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入模型时,需要支持动态调整租户存储配额;模

    来自:帮助中心

    查看更多 →

  • ModelArts Studio大模型开发平台使用流程

    开发盘古科学计算模型 训练科学计算模型 进行模型的训练,如预训练、微调等训练方式。 训练科学计算模型 部署科学计算模型 部署后的模型可进行调用操作。 部署科学计算模型 调用科学计算模型 支持“能力调测”功能与API两种方式调用模型。 调用科学计算模型 管理盘古模型空间资产

    来自:帮助中心

    查看更多 →

  • NLP大模型训练流程与选择建议

    NLP模型训练流程与选择建议 NLP模型训练流程介绍 NLP模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过

    来自:帮助中心

    查看更多 →

  • 使用“能力调测”调用NLP大模型

    使用“能力调测”调用NLP模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP模型部署任务。 NLP模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP模型 表1 NLP模型能力调测参数说明

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了