盘古大模型

 

盘古大模型致力于深耕行业,打造金融、政务、制造、矿山、气象、铁路等领域行业大模型和能力集,将行业知识know-how与大模型能力相结合,重塑千行百业,成为各组织、企业、个人的专家助手。

 
 

    科学计算大模型 更多内容
  • 创建NLP大模型训练任务

    “微调”。模型选择完成后,参考表1完成训练参数设置。 表1 NLP模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古模型模型类型 选择“NLP模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对模型的全部参数进

    来自:帮助中心

    查看更多 →

  • 大模型微调训练类问题

    模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古模型效果最优 如何判断盘古模型训练状态是否正常 如何评估微调后的盘古模型是否正常 如何调整推理参数,使盘古模型效果最优 为什么微调后的盘古模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码

    来自:帮助中心

    查看更多 →

  • 管理NLP大模型训练任务

    管理NLP模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:

    来自:帮助中心

    查看更多 →

  • 开发盘古大模型提示词工程

    开发盘古模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词

    来自:帮助中心

    查看更多 →

  • 发布训练后的NLP大模型

    发布训练后的NLP模型 NLP模型训练完成后,需要执行发布操作,操作步骤如下: 在模型训练列表页面选择训练完成的任务,单击训练任务名称进去详情页。 在“训练结果”页面,单击“发布”。 图1 训练结果页面 填写资产名称、描述,选择对应的可见性,单击“确定”发布模型。 发布后的模型会作为资产同步显示在“空间资产

    来自:帮助中心

    查看更多 →

  • 8大特色压测模型简介

    8特色压测模型简介 性能测试服务沉淀了30年高并发测试工程方案与实践,提供了浪涌(突发流量)、智能摸高(系统性能摸底)、震荡(模拟高低峰)、TPS模式(压力自定义)等8模式,快速构建真实场景,助力产品压测场景覆盖率提升50%,满足客户全场景的压测诉求。 压力测试支持的8种模式如下:

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启。 父主题: 主流开源模型基于Server适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    el.py中的main函数,保存模型时将safe_serialization指定为False int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源模型基于Standard适配PyTorch

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 父主题: 主流开源模型基于DevServer适配PyTorch NPU推理指导(6.3

    来自:帮助中心

    查看更多 →

  • 使用大模型在ModelArts Standard创建模型部署在线服务

    使用模型在ModelArts Standard创建模型部署在线服务 背景说明 目前模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入模型时,需要支持动态调整租户存储配额;模

    来自:帮助中心

    查看更多 →

  • NLP大模型训练流程与选择建议

    NLP模型训练流程与选择建议 NLP模型训练流程介绍 NLP模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过

    来自:帮助中心

    查看更多 →

  • 使用“能力调测”调用NLP大模型

    使用“能力调测”调用NLP模型 平台提供的“能力调测”功能支持用户直接调用预置模型或经过训练的模型。使用该功能前,需完成模型的部署操作,详见创建NLP模型部署任务。 NLP模型支持文本对话能力,在输入框中输入问题,模型就会返回对应的答案内容。 图1 调测NLP模型 表1 NLP模型能力调测参数说明

    来自:帮助中心

    查看更多 →

  • 附录:Standard大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Standard适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 附录:Standard大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Standard适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理standard常见问题

    附录:模型推理standard常见问题 问题1:在推理预测过程中遇到NPU out of memory。 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified

    来自:帮助中心

    查看更多 →

  • 大模型微调需要的数据有要求吗?

    模型微调需要的数据有要求吗? AI原生应用引擎用于模型微调的数据集任务领域为“ 自然语言处理 ”、数据集格式为“对话文本”。 文件内容要求为标准json数组,例如: [{"instruction": "aaa", "input": "aaa", "output": "aaa"},{"instruction":

    来自:帮助中心

    查看更多 →

  • 计算

    计算 弹性云服务器 E CS 裸金属服务器 BMS 镜像服务 IMS 弹性伸缩 AS 父主题: SCP授权参考

    来自:帮助中心

    查看更多 →

  • 查看NLP大模型训练状态与指标

    查看NLP模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练指标、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 已发布

    来自:帮助中心

    查看更多 →

  • 附录:Standard大模型推理常见问题

    self.inv_freq.npu() 问题7:使用Qwen2-7B、Qwen2-72B模型有精度问题,重复输出感叹号 检查【配置环境变量】章节中,高精度模式的环境变量是否开启 父主题: 主流开源模型基于Standard适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 方案概述

    驾驶、模型、AIGC、科学AI等不同行业。AI人工智能的实现需要大量的基础设施资源,包括高性能算力,高速存储和网络带宽等基础设施,即“算力、存力、运力”的AI基础设施底座,让算力发展不要偏斜。 从过去的经典AI,到今天人人谈论的模型,自动驾驶,我们看到AI模型的参数及

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了