云数据库 RDS for MySQL

 

云数据库 RDS for MySQL拥有即开即用、稳定可靠、安全运行、弹性伸缩、轻松管理、经济实用等特点,让您更加专注业务发展。

 
 

    mysql分表设计实战 更多内容
  • 如何设计宽表主键

    如何设计主键 GeminiDB Cassandra是一款分布式数据引擎,宽引擎中的数据均按照主键进行分布。在执行查询时,如果中存在多列主键,系统会从最左边的主键开始匹配。如果主键设置不当,则可能导致主键无法被有效利用,进而产生热点问题,影响查询性能。因此,在数据分区和数据

    来自:帮助中心

    查看更多 →

  • ClickHouse宽表设计

    ClickHouse宽设计 ClickHouse宽设计原则 ClickHouse字段设计 ClickHouse本地设计 ClickHouse分布式设计 ClickHouse分区设计 ClickHouse索引设计 父主题: ClickHouse应用开发规范

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    【建议】的分布方式的选择一般遵循以下原则: 2 的分布方式及使用场景 分布方式 描述 适用场景 Hash 数据通过Hash方式散列到集群中的所有DN上。 数据量较大的事实。 Replication 集群中每一个DN都有一份全量数据。 维度、数据量较小的事实。 Roundrobin

    来自:帮助中心

    查看更多 →

  • GaussDB(DWS)表设计规则

    支持的并发度。通过对关联条件和分组条件的仔细设计,能够尽可能的减少不必要的数据shuffle。 选择存储方案 【建议】的存储类型是定义设计的第一步,用户业务类型是决定的存储类型的主要因素,存储类型的选择依据请参考1。 1 的存储类型及场景 存储模型 优点 缺点 适用场景

    来自:帮助中心

    查看更多 →

  • RDS for MySQL支持分库分表及读写分离的业务功能吗

    RDS for MySQL支持分库及读写分离的业务功能吗 RDS支持分库及读写分离功能,具体如下: 分库功能依赖于所使用的 分布式数据库 中间件(Distributed Database Middleware,简称DDM),用于解决存储空间或者性能拓展的问题,详见通过DDM对RDS

    来自:帮助中心

    查看更多 →

  • 工作说明书

    按计划,分步骤实施实战赋能操作 - 客户验收 准备实战赋能服务结项相关文档 《实战赋能服务验收报告》 5 专家服务 流程 流程说明 完工标准 需求调研 调研客户专家服务诉求 - 项目实施 按计划,分步骤实施专家服务操作 - 客户验收 准备专家服务结项相关文档 《专家服务验收报告》 6 OS技术支持服务

    来自:帮助中心

    查看更多 →

  • Hudi表模型设计规范

    流式计算采用MOR。 流式计算为低时延的实时计算,需要高性能的流式读写能力,在Hudi中存在的MOR和COW两种模型中,MOR的流式读写性能相对较好,因此在流式计算场景下采用MOR模型。关于MOR在读写性能的对比关系如下: 对比维度 MOR COW 流式写 高 低 流式读

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 【建议】除非视图之间存在强依赖关系,否则不建议视图嵌套。 【建议】视图定义中尽量避免排序操作。 关联设计 【建议】之间的关联字段应该尽量少。 【建议】关联字段的数据类型应该保持一致。 【建议】关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。

    来自:帮助中心

    查看更多 →

  • Hudi表索引设计规范

    Hudi索引设计规范 规则 禁止修改索引类型。 Hudi的索引会决定数据存储方式,随意修改索引类型会导致中已有的存量数据与新增数据之间出现数据重复和数据准确性问题。常见的索引类型如下: 布隆索引:Spark引擎独有索引,采用bloomfiter机制,将布隆索引内容写入到Parquet文件的footer中。

    来自:帮助中心

    查看更多 →

  • Hudi表分区设计规范

    议使用。 建议 事实采用日期分区,维度采用非分区或者大颗粒度的日期分区 是否采用分区要根据的总数据量、增量和使用方式来决定。从的使用属性看事实和维度具有的特点: 事实:数据总量大,增量大,数据读取多以日期做切分,读取一定时间段的数据。 维度:总量相对小,增量小

    来自:帮助中心

    查看更多 →

  • Hudi表分区设计规范

    议使用。 建议 事实采用日期分区,维度采用非分区或者大颗粒度的日期分区 是否采用分区要根据的总数据量、增量和使用方式来决定。从的使用属性看事实和维度具有的特点: 事实:数据总量大,增量大,数据读取多以日期做切分,读取一定时间段的数据。 维度:总量相对小,增量小

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • Hudi表模型设计规范

    流式计算采用MOR。 流式计算为低时延的实时计算,需要高性能的流式读写能力,在Hudi中存在的MOR和COW两种模型中,MOR的流式读写性能相对较好,因此在流式计算场景下采用MOR模型。关于MOR在读写性能的对比关系如下: 对比维度 MOR COW 流式写 高 低 流式读

    来自:帮助中心

    查看更多 →

  • TaurusDB库表设计规范

    避免使用分区,如有需要,可以使用多个独立的代替。 分区的缺点: DDL操作需要锁定所有分区,导致所有分区上操作都被阻塞。 当数据量较大时,对分区进行DDL或其他运维操作难度大风险高。 分区使用较少,存在未知风险。 当单台 服务器 性能无法满足时,对分区进行拆的成本较高。

    来自:帮助中心

    查看更多 →

  • ClickHouse宽表设计原则

    ClickHouse宽设计原则 宽设计原则 由于ClickHouse的宽查询性能较优,且当前ClickHouse可支持上万列的宽横向扩展。 在大部分场景下,有大join以及多join的场景,且多个join的数据变化更新频率较低,这种情况,建议对多个join查询逻辑提

    来自:帮助中心

    查看更多 →

  • ClickHouse本地表设计

    ClickHouse本地设计 规则 单(分布式)的记录数不要超过万亿,对于万亿以上的查询,性能较差,且集群维护难度变大。单(本地)不超过百亿。 设计都要考虑到数据的生命周期管理,需要进行TTL属性设置或定期老化清理分区数据。 单的字段建议不要超过5000列。

    来自:帮助中心

    查看更多 →

  • Hudi表索引设计规范

    Hudi索引设计规范 规则 禁止修改索引类型。 Hudi的索引会决定数据存储方式,随意修改索引类型会导致中已有的存量数据与新增数据之间出现数据重复和数据准确性问题。常见的索引类型如下: 布隆索引:Spark引擎独有索引,采用bloomfiter机制,将布隆索引内容写入到Parquet文件的footer中。

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 除非视图之间存在强依赖关系,否则不建议视图嵌套。 视图定义中尽量避免排序操作。 关联设计 之间的关联字段应该尽量少。 关联字段的数据类型应该保持一致。 关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。 父主题: 数据库对象设计

    来自:帮助中心

    查看更多 →

  • 视图和关联表设计

    视图和关联设计 视图设计 【建议】除非视图之间存在强依赖关系,否则不建议视图嵌套。 【建议】视图定义中尽量避免排序操作。 关联设计 【建议】之间的关联字段应该尽量少。 【建议】关联字段的数据类型应该保持一致。 【建议】关联字段在命名上,应该可以明显体现出关联关系。例如,采用同样名称来命名。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了