工业大数据四大特征 更多内容
  • 特征选择

    特征选择 删除列 删除特征列的场景有很多,例如:两个特征呈线性变化关系,为减少模型训练的开销,删除其中一个特征列。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 特征选择 > 删除列”,界面新增“删除列”内容。 对应参数说明,如表1所示。 表1 参数说明 参数 参数说明

    来自:帮助中心

    查看更多 →

  • 筛选特征

    筛选特征 样本对齐执行完成后单击下一步进入“特征选择”页面,这一步企业A需要选出企业A自己和大数据厂商B的特征及标签用于后续的训练。 企业A可以选择特征及标签后“启动分箱和IV计算”,通过联邦的统计算法计算出所选特征的iv值,一般而言iv值较高的特征更有区分性,应该作为首选的训练

    来自:帮助中心

    查看更多 →

  • 修改数据源特征

    修改数据特征 功能介绍 修改数据源中的特征。 调试 您可以在 API Explorer 中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id}/data-struct

    来自:帮助中心

    查看更多 →

  • 特征操作

    信息熵是通过计算数据集的特征列与标签列之间的相关性筛选出有价值的特征列。相关性越大,信息熵越大;相关性越小,信息熵越小。将信息熵由到小排序,筛选出信息熵较大的有价值的特征列。 信息熵操作方法如下。 单击表头,选中一个特征列作为标签列。 选定列不同值数量不能超过100。 单击“特征操作”,从下拉框中选择“信息熵”。

    来自:帮助中心

    查看更多 →

  • 特征画像

    ,对应到后面的特征选择、算法推荐,会有不同的策略,有效提升模型的构建效率。 单击“选择数据”左下方的“特征画像”。 新增“特征画像”内容,如图1所示。 图1 特征画像 单击“特征画像”代码框左侧的图标,运行代码。 通过运行结果左侧两个图可以直观的看一下原始数据数据的密度分布图。运行结果右侧的参数说明,如表1所示。

    来自:帮助中心

    查看更多 →

  • 呼叫特征

    呼叫特征 表1 呼叫特征说明 值 说明 0 普通客户呼叫 1 来自话务员 2 长途客户呼叫 3 CTI收到网络路由实呼后发起的路由 4 国际长途来话 40 预约呼出 41 预占用呼出 42 预连接呼出 43 虚呼入呼出 44 预览呼出 45 回呼请求 51 内部求助 父主题: 附录

    来自:帮助中心

    查看更多 →

  • 分析ModelArts数据集中的数据特征

    特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样本数为0时,发布版本后,数据特征页签版本置灰不可选,无法显示数

    来自:帮助中心

    查看更多 →

  • 特征工程

    在当前界面,可以看到如下两个特征工程: HardDisk-Detect_Good:好盘特征工程,用于对好盘训练数据或测试数据,进行数据处理,并生成经过特征处理后的新数据。 HardDisk-Detect_Fail:坏盘特征工程,用于对坏盘训练数据或测试数据,进行数据处理,并生成经过特征处理后的新数据。

    来自:帮助中心

    查看更多 →

  • 特征工程

    用户在使用特征工程之前,需要提供一份全局的特征信息文件,后续的特征工程、在线模块都会用到该文件。 文件数据信息请参见全局特征信息文件。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 保留已有宽表 对结果保存路径中已有宽表数据的保留方式: 否,不保留任何已有的数据。

    来自:帮助中心

    查看更多 →

  • 特征操作接口

    signature_type 是 String 特征类型。 最小长度:1 最大长度:150 signature_name 否 String 特征名称。 signature_attributes 否 Array of 表4 objects 特征属性。 表4 MetadataAttributeRequest

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 如何选中全量特征列? 算法工程处理的时候必须要先采样吗? 特征处理操作完成后怎么应用于数据集全量数据特征工程和算法工程的关系? JupyterLab环境异常怎么处理? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 特征工程

    特征工程 特征工程简介 Python和Spark开发平台 JupyterLab开发平台 父主题: 用户指南

    来自:帮助中心

    查看更多 →

  • 特征管理

    特征管理 特征操作接口 父主题: 应用模型

    来自:帮助中心

    查看更多 →

  • 全局特征信息文件

    全局特征信息文件 在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features

    来自:帮助中心

    查看更多 →

  • APP特征信息无效

    APP特征信息无效 整改通知: 您填写的APP公钥或MD5值为无效信息。 可能原因: 出现此情况,可能您填写的APP公钥或MD5值为无效字段。 整改建议: 请参考变更备案,填写新的APP公钥或MD5值,确保备案APP的特征信息与实际信息保持一致。 父主题: APP信息

    来自:帮助中心

    查看更多 →

  • 应用场景

    企业实时产量报表。 工人手机派工、报工。 统计工人生产绩效。 三业务工具:为企业提供ERP、MES主流工业应用和应用互通工具。 应用间业务互通: 基础资料同源:在ERP中维护的物料信息,可以在MES录入工单时被使用。 业务流的数据互通:在ERP中录入的销售订单,可以在MES录入工单时,通过来源单据被选到。

    来自:帮助中心

    查看更多 →

  • 学件简介

    功能模块 说明 数据接入模块 实现与各类数据源的接口、格式转换等。 数据管理模块 提供源数据、标注样本的存储、导入导出、查询等功能。 数据处理模块 主要实现数据的预处理,包括标签处理、缺失值填充、数据标准化等。 特征处理模块 主要实现对KPI的数据分布特征进行分析,自动选择特征及参数。并提供四大类,80+特征的自动提取。

    来自:帮助中心

    查看更多 →

  • 特征工程简介

    特征工程简介 用户可以通过特征工程对数据集进行数据处理、特征组合、特征转换等特征处理,最大限度的从原始数据中提取特征以供模型训练使用。此外,用户还可以将优质的特征工程发布成服务,以服务的形式对具备完全相同特征数据进行预处理。 特征工程相关的基本概念: 特征工程:对数据进行特征处理操作的工程。

    来自:帮助中心

    查看更多 →

  • 服务内容和服务场景

    算法模型的数据特征维度21~50的场景,提供客户管理和数据情况调研服务,完成项目规格设计,根据数据模板完成数据分析与整理。 工业生产优化规划与方案设计服务-企业版 对业务场景数据量、数据源调研,评估项目数据特征维度系数,适用于AI算法模型的数据特征维度50~100的场景,提供客户

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    创建特征工程 用户可以在“数据集详情”页面基于数据集实例新建特征工程,对数据集执行特征操作;也可以在“特征工程管理”页面新建特征工程。我们以在“特征工程管理”页面创建特征工程为例,操作步骤如下。 单击“特征工程管理”页面的。 弹出“特征处理”对话框。如图1所示。 图1 创建特征工程

    来自:帮助中心

    查看更多 →

  • 创建特征工程

    创建特征工程 前提条件 Chrome最新版本支持JupyterLab平台,版本示例:87.0.4280.141。不支持62开头的版本或者比62更低的版本。 操作步骤 用户可以在“数据集详情”页面基于数据集实例新建特征工程,对数据集执行特征操作;也可以在“特征工程管理”页面新建特征

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了