GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu深度学习加速 更多内容
  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • GPU加速型

    GPU加速 云服务器 包括G系列和P系列两类。其中: G系列:图形加速型弹性 服务器 ,适合于3D动画渲染、CAD等。 P系列:计算加速型或推理加速型弹性云服务器,适合于深度学习、科学计算、CAE等。 为了保障GPU加速云服务器高可靠、高可用和高性能,该类型云服务器的公共镜像中会默认预置带GPU监控的CES

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 约束与限制

    NVIDIA GPU驱动版本 CUDA Toolkit版本 460.106 CUDA 11.2.2 Update 2 及以下 418.126 CUDA 10.1 (10.1.105)及以下 GPU镜像 CUDA和cuDNN都是与GPU相关的技术,用于加速各种计算任务,特别是深度学习任务。在使用NVIDIA

    来自:帮助中心

    查看更多 →

  • 功能介绍

    部分深度学习模型参数 一键式模型部署和API发布,提供深度学习模型的快速部署功能,支持GPU资源分配、弹性扩容、模型迭代发布、应用监控和统计分析,轻松实现AI能力服务化。 图19 模型部署发布平台 平台基于模型训练结果,面向典型业务场景与应用需求,可提供遥感影像在线智能解译能力,包括遥感影像的单

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速云服务器GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速云服务器无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入弹性云服务器列表页面。 在待深度诊断的ECS的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 CCE AI套件(NVIDIA GPU)插件使用DCGM-Exporter监控GPU指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理

    来自:帮助中心

    查看更多 →

  • 计算服务选型

    个人使用/维护终端等 GPU加速型 Intel g 搭载T4卡,图像加速 3D动画渲染、CAD p 搭载V100卡,计算加速 AI深度学习、科学计算 pi 搭载T4卡,推理加速 实时推理+轻量级训练 AI加速型 Intel ai 搭载昇腾310芯片,计算加速或推理加速 深度学习、科学计算、CAE

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 如何配置Pod使用GPU节点的加速能力?

    如何配置Pod使用GPU节点的加速能力? 问题描述 我已经购买了GPU节点,但运行速度还是很慢,请问如何配置Pod使用GPU节点的加速能力。 解答 方案1: 建议您将集群中GPU节点的不可调度的污点去掉,以便GPU插件驱动能够正常安装,同时您需要安装高版本的GPU驱动。 如果您的集

    来自:帮助中心

    查看更多 →

  • 手动安装GPU加速型ECS的GRID驱动

    微软的远程登录协议不支持使用GPU的3D硬件加速能力,如需使用请安装VNC/PCoIP/NICE DCV等第三方桌面协议软件,并通过相应客户端连接GPU实例,使用GPU图形图像加速能力。 使用第三方桌面协议连接后,在Windows控制面板中打开NVIDIA控制面板 。 在一级许可证服务器中填入部署的License

    来自:帮助中心

    查看更多 →

  • 最新动态

    2021年6月 序号 功能名称 功能描述 阶段 相关文档 1 GPU加速型,新增P2s型弹性云服务器。 P2s型弹性云服务器采用NVIDIA Tesla V100 GPU,能够提供超高的通用计算能力,适用于AI深度学习、科学计算,在深度学习训练、科学计算、计算流体动力学、计算金融、地震分析、

    来自:帮助中心

    查看更多 →

  • 方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    架构需要使用到大规模的计算集群(GPU/NPU服务器),集群中的服务器访问的数据来自一个统一的数据源,即一个共享的存储空间。这种共享访问的数据有诸多好处,它可以保证不同服务器上访问数据的一致性,减少不同服务器上分别保留数据带来的数据冗余等。另外以 AI 生态中非常流行的开源深度学习框架PyTorc

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    用于轻量级Web服务器、开发、测试环境以及中低性能数据库等场景。 GPU加速型:提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等。仅支持1.11及以上版本集群添加GPU加速型节点。 高性能计

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了