GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu计算资源池 更多内容
  • GPU计算型

    GPU计算GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为云E CS 的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    开始执行批量计算前,请先创建资源池环境。 登录BCE控制台,在左侧导航栏单击“资源池管理”。 在“共享资源池”页签,单击“创建共享资源池”。 图1 创建共享资源池 在“创建共享资源池”页面中,填写基础信息,并选择资源池所在的命名空间,具体参数如表1所示。 表1 创建共享资源池 参数 说明

    来自:帮助中心

    查看更多 →

  • 查询边缘资源池详情

    arch String 计算机架构。 enable_gpu Boolean 是否使用GPU。 enable_npu Boolean 是否使用NPU。 memory Integer 内存大小。 gpu_info Array of GpuInfo objects GPU信息。 npu_info

    来自:帮助中心

    查看更多 →

  • Standard资源管理

    专属资源池为用户提供独立的计算集群、网络,不同用户间的专属资源池物理隔离,公共资源池仅提供逻辑隔离,专属资源池的隔离性、安全性要高于公共资源池。 专属资源池用户资源独享,在资源充足的情况下,作业是不会排队的;而公共资源池使用共享资源,在任何时候都有可能排队。 专属资源池支持打通用户的网络,在该专属资源

    来自:帮助中心

    查看更多 →

  • GPU调度

    GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 父主题: 调度

    来自:帮助中心

    查看更多 →

  • Standard资源池功能介绍

    在AI开发时使用Standard资源池 ModelArts Standard资源池说明 在使用ModelArts进行AI开发时,您可以选择使用如下两种资源池: 专属资源池:专属资源池不与其他用户共享,资源更可控。在使用专属资源池之前,您需要先创建一个专属资源池,然后在AI开发过程中选择此专属资源池。 公共

    来自:帮助中心

    查看更多 →

  • 命名空间

    当前云容器实例提供“通用计算型”和“GPU加速型”两种类型的资源,创建命名空间时需要选择资源类型,后续创建的负载中容器就运行在此类型的集群上。 通用计算型:支持创建含CPU资源的容器实例,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例,适用于深度学习、科学计算、视频处理等场景。

    来自:帮助中心

    查看更多 →

  • 专属计算资源池的内存分配率是如何计算的?

    用内存包括用户弹性 云服务器 中可使用的内存(即弹性 服务器 规格所定义大小的内存)及为了管理该云服务器所需要消耗的DeC物理服务器的可用内存。管理该云服务器所需要消耗的DeC物理服务器可用内存通常约占弹性云服务器定义内存规格的1%~2%,该部分内存无法被弹性云服务器使用。 空闲:未被

    来自:帮助中心

    查看更多 →

  • 约束与限制

    表1 规格说明 资源类型 规格 说明 计算资源 所有按需计费、包年/包月、套餐包中的计算资源规格,包括CPU、GPU和NPU 购买的所有类型的计算资源均不支持跨Region使用。 计算资源 套餐包 套餐包仅用于公共资源池,不能用于专属资源池。 配额限制 查看每个配额项目支持的默认

    来自:帮助中心

    查看更多 →

  • 训练作业容错检查

    隔离故障节点后,系统会在新的计算节点上重新创建训练作业。如果资源池规格紧张,重新下发的训练作业会以第一优先级进行排队。如果排队时间超过30分钟,训练任务会自动退出。该现象表明资源池规格任务紧张,训练作业无法正常启动,推荐您购买专属资源池补充计算节点。 如果您使用专属资源池创建训练作业,容错

    来自:帮助中心

    查看更多 →

  • GPU负载

    GPU负载 使用Tensorflow训练神经网络 使用Nvidia-smi工具

    来自:帮助中心

    查看更多 →

  • Lite功能介绍

    直接操作资源池中的节点和k8s集群。 ModelArts Lite Cluster主要支持以下功能: 同一昇腾算力资源池中,支持存在不同订购周期的服务器 同一昇腾算力资源池中,支持资源池中订购不同计费类型/计费周期的资源,解决如下用户的使用场景: 用户在包长周期的资源池中无法扩容短周期的节点。

    来自:帮助中心

    查看更多 →

  • 计算

    计算 弹性云服务器 ECS 裸金属服务器 BMS 镜像服务 IMS 弹性伸缩 AS 父主题: SCP授权参考

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型ECS的GPU驱动 操作场景 当GPU加速云服务器需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 创建Standard专属资源池

    选择计费模式,“包年/包月”或“按需计费”。 资源池类型 - 可选物理资源池和逻辑资源池。逻辑资源池与规格有关,如果无逻辑规格则不显示逻辑资源池。 作业类型 - 根据业务需要,选择该资源池支持的作业类型。 物理资源池:支持“开发环境”、“训练作业”和“推理服务”的作业类型。 逻辑资源池:仅支持“训练作业”的作业类型。

    来自:帮助中心

    查看更多 →

  • 创建训练任务

    install -r requirements.txt && /bin/sh tools/run.sh 资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择8卡GPU规格。 计算节点:1。 SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。

    来自:帮助中心

    查看更多 →

  • GPU驱动概述

    GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • GPU函数管理

    GPU函数管理 Serverless GPU使用介绍 部署方式 函数模式

    来自:帮助中心

    查看更多 →

  • 升级Standard专属资源池驱动

    升级Standard专属资源池驱动 场景介绍 当专属资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助升级专属资源池GPU/Ascend驱动的能力。 驱动升级有两种升级方式:安全升级、强制升级。

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了