函数工作流 FunctionGraph

函数工作流(FunctionGraph)是一项基于事件驱动的函数托管计算服务。通过函数工作流,只需编写业务函数代码并设置运行的条件,无需配置和管理服务器等基础设施,函数以弹性、免运维、高可靠的方式运行。此外,按函数实际执行资源计费,不执行不产生费用

 
 

    diff函数 机器学习 更多内容
  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • DROP FUNCTION

    qualified_function_name 描述 删除与给定函数名称匹配的现有函数。如果不存在匹配的函数,可选的“IF EXISTS”子句会导致“NOT_FOUND”错误被抑制。 示例 删除函数“example.namespace01.date_diff” DROP FUNCTION example

    来自:帮助中心

    查看更多 →

  • 采集诊断仪表盘模板

    group by report_topic) 采集机器数/同比昨天图表所关联的查询分析语句如下所示 select diff[1] as "采集机器数" , case when diff[3] is not null then round(diff[3] -1 ,2) else '昨日无数据'

    来自:帮助中心

    查看更多 →

  • 方案概述

    elArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台 ModelArts可以快速创建和训练机器学习模型,无需任何编码。使模型开发和训练过程更加便捷和高效。

    来自:帮助中心

    查看更多 →

  • 方案概述

    FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务 IAM上创建一个委托,用于授权FunctionGraph访问ModelArts在线服务和OBS桶。 方案优势 快速构建机器学习模型 AI开发平台ModelArts

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • GS

    续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    续扩展。 model_name name 模型的实例名,每个模型对应AiEngine在线学习进程中的一套参数、训练日志、模型系数。此列需为unique。 datname name 该模型所服务的database名,每个模型只针对单个database。此参数决定训练时所使用的数据。

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 同比和环比函数

    同比和环比函数 本文介绍同比和环比函数的语法规则,包括参数解释、函数示例等。 函数列表 表1 同比和环比函数 函数 描述 compare函数 用于对比当前时间周期内的计算结果与n秒之前时间周期内的计算结果。 ts_compare函数 用于对比当前时间周期内的计算结果与n秒之前时间周期内的计算结果。

    来自:帮助中心

    查看更多 →

  • 时间和日期处理函数和操作符

    ----------- 2001 (1 row) date_part date_part函数是在传统的Ingres函数的基础上制作的(该函数等效于SQL标准函数extract): date_part('field', source) 这里的field参数必须是一个

    来自:帮助中心

    查看更多 →

  • SQL同比和环比函数

    SQL同比和环比函数 本文介绍同比和环比函数的基础语法和示例。 compare函数 compare函数用于对比当前时间周期内的计算结果与n秒之前时间周期内的计算结果。 语法格式 对比当前时间周期内的计算结果与n秒之前时间周期内的计算结果。 compare(x,n) 对比当前时间周

    来自:帮助中心

    查看更多 →

  • 大模型开发基本概念

    训练相关概念说明 概念名 说明 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 时间和日期处理函数和操作符

    ----------- 2001 (1 row) date_part date_part函数是在传统的Ingres函数的基础上制作的(该函数等效于SQL标准函数extract): date_part('field', source) 这里的field参数必须是一个

    来自:帮助中心

    查看更多 →

  • 时间和日期处理函数和操作符

    ----------- 2001 (1 row) date_part date_part函数是在传统的Ingres函数的基础上制作的(该函数等效于SQL标准函数extract): date_part('field', source) 这里的field参数必须是一个

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 日期时间函数

    10:10:10。 Unix时间戳本质上也是字符串。本文的日期时间函数中,除dt_parse、dt_str和dt_parsetimestamp函数支持以上三种数据类型作为参数,其他函数均需要保证参数类型的一致性。 函数列表 类型 函数 说明 通用日期时间转换 dt_parse 将值或时间表达式的值转换为日期时间对象。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了